
DOCUMENT RESiiME

ED 397 026 SP 036 742

AUTHOR Merrill, Douglas C.; And Others
TITLE Tutoring: Guided Learning by Doing. RAND Reprints.

INSTITUTION Rand Corp., Santa Monica, CA. Inst. on Education and
Training.

REPORT NO RAND-RP-329
PUB DATE 95

NOTE 63p.; Reprinted from "Cognition and Instruction" (v13
n3 1995).

AVAI' ,1LE FROM Distribution Services, RAND, 1700 Main Street, P.O.
Box 2138, Santa Monica, CA 90407-2138.

PUB TYPE Reports Research/Technical (143)

EDRS PRICE MF01/PC03 Plus Postage.
DESCRIPTORS College Students; Critical Thinking; Discourse

Analysis; *Feedback; Higher Education; *Individual
Instruction; Learning Activities; *Learning
Processes; *Problem Solving; Proramming Languages;
Teaching Methoas; *Tutozing; Tutors

IDENTIFIERS LISP Programing Language

ABSTRACT
Individualized instruction significantly improves

students' pedagogical and motivational outcomes. The study described
here sought to characterize tutorial behaviors that could lead to
these benefits and to consider why these behaviors should be
pcdagogically useful. The experiment studied 16 undergraduate and
graduate university students learning LISP programming with the
assistance of a tutor. Tutoring sessions were audiotapcd, allowing
analysis of every verbal utterance during the sessions and
identification of the conversational events that led to pedagogical
success. This discourse analysis suggested that tutors were
successful because they took a very active role in leading the
problem solving by offering confirmatory feedback and additional
guidance while students were on profitable paths and error feedback
after mistakes. However, tutors carefully structured their feedback
to allow students to perform as much of the work as possible while
ensuring that problem solving stayed on track. These results
suggested the types of strategies tutors employ to facilitate guided
learning by doing. Instructions for coders and reliability coders and
a table showing transitions between events are appended. (Contains 72

references.) (Author/ND)

* Reproductions supplied by EDRS are the best that can be made

from the original document.

gAND

REPRINTS

Tutoring

Guided Learning by Doing

Douglas C. Merrill, Brian J. Reiser,
Shannon K. Merrill, and Shari Landes

Reprinted from Cognition and Instruction

U.S. DEPARTMENT Of EDUCATION
Office or Educational Research and Imrormtment

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

0 This document has been reproduced as
received from the person or organization
onginating 0

0 Minor changes have been made to improve
reproduction duality

Points of sKVI/ o Op..0,15 Staled in !hos docu .
ment do not necessarily represent official
OE RI posibon or policy

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL

HAS BEEN GRANTED 13'v'

)

0 T HE EDDCATIONAl RE SOI E

INFORMATION CENTER IERICI

Institute on Education and Training

2
BEST COPY AVAILABLE

The RAND reprint series contains, with permission of the publiQher,
reprints of research originally published by RAND staff in journals or
books. RAND is a nonprofit institution that helps improve public
policy through research and analysis. RAND's publications do not
necessarily reflect the opinions or policies of its research sponsors.
For more information or to order RAND documents, see RAND's URL
(http://www.rand.org) or contact Distribution Services, RAND, 1700
Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138, phone
(310) 451-7002; fax (310) 451-6915; Internet order@rand.org.

Published 1995 by RAND
1700 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138

,'"

r

,:wv>,z> ,

:,';<:%!Al.A.

wz

v,:>tvek

bnk44,4

,
`'Z' ',">*15

"

-

,,,... 5̀" =,.

.
,

".?"1 Ash..2.4 ,L

:REPBINT

0

.
. .

Tutoring:
Guided Learning by Doing

Douglas C. Merrill
Institute for Education and Training

RAND

Brian J. Reiser and Shannon K. Merrill
School of Education and Social Policy

and The In.stitute for the Learning Sciences
Northwestern University

Shari Landes
Department of Psychology

Princeton University

Individualized instruction significantly improves students' pedagogical and moti-
vational outcomes. In this article, we seek to characterize tutorial behaviors that
could lead to these benefits and to consider why these actions should be pedagogi-
cally useful. This experiment examined university students learning LISP program-
ming with the assistance of a tutor. Tutoring sessions were audiotaped, allowine us
to analyze every verbal utterance during the sessions and thereby to identify the
conversational events that lead to pedagogical success. This discourse analysis
suggests that tutors are successful because they take a very active role in leading
the problem solving by offering confirmatory feedback and additional guidance
while students on profitable paths and error feedback after mistakes. However.
tutors carefully structure their feedback to allow students to perform as much of the
work as possible while the tutor ensures that problem solving stays on track. These
results suggest the types of strategies tutors employ to facilitate guided learning
by doing.

Novices often have great difficulty mastering new domains. It is`generally ac-
cepted that the best way to acquire new domain skills is by solving problems
(Anderson, 1983; Laird, Rosenbloom, & Newell, 1986: VanLehn, 1988), but
there are dangers inherent in this sort of learning by doing. Floundering during

Requests for reprints should be sent to Douglas C. Merrill. RAND, 1700 Main Street. Santa
Monica, CA 90407-2138. e-mail: Doug_Merrill@rand.org

Reprinted by permission from Cognition and Instruction, Vol. 13, No. 3, 1995, pp. 315-
372. Copyright 1995 Lawrence Erlhaum Associates, Inc.

31 6 MERRILL REISER. MERRILL, LANDES

problem solving often leads to working memory overload, which interferes with
learning (Sweller, 1988). Furthermore, errors during problem solving can often
engender confusion and frustration. It is very difficult to learn from problem-
solving episodes that consist largely of attempts to recover from errors (Anderson,
1983; Li.;wis & Anderson, 1985). Ameliorating these costs would allow students
to gain the maximum benefits of learning by doing.

Individualized instruction, or tutoring, considered by many to be the best method
of instruction, is one method for minimizing these costs (B. S. Bloom, 1984; P. A.
Cohen, Kulik, & Kulik, 1982; Lepper, Aspinwall, Mumme, & Chabay, 1990).
Individualized instruction has both motivational and cognitive benefits. For exam-
ple, tutoring leads students to feel more competent (Lepper & Chabay, 1988). This
feeling appears to be justified; tutored students perform 2 standard deviations
higher than their colleagues receiving traditional instruction, indic2ting that almost
all tutored students perform better than the mean performance of students receiving
classroom instruction (B. S. Bloom, 1984). Yet although these pedagogical benefits
have been noted, their source has not been adequately characterized. Our present
goal is to investigate the strategies tutors use that can lead to these benefits.

Merrill, Reiser, Ranney, and Trafton (1992) argued that tutors balance the
goal of allowing students to perform as much of the problem solving as possible
with the goal of ensuring that problem solving remains productive. Rather than
letting students solve problems on their own, with occasional advice, tutors
carefully monitor the problem solving to ensure that it stays on track and to help
direct students back toward a productive solution path when needed. Thus, tutors
offer a kind of guided learning by doing that enables their students to attain the
benefits of learning by doing while avoiding some of the costs. We examine
here how tutors achieve these benefits through careful guidance and characterize
the way tutorial interactions lead to strong learning advantages for students.

We describe the ways in which tutors guide and assist students' learning while
they solve problems and work to understand new material. Furthermore, we
characterize the situations in which this guidance takes place. In fact, this guidance
is not always easy to identify. Examining an actual tutoring session reveals the
complexity and subtlety of the tutor's role. Example 1, a transcript of a student
tutor discussion of LISP, shows a very interactive relationship between student
and tutor, with the student and tutor interruptin2 each other frequently and oc-
casionally completing each other's sentences.

Example I (transcript of a LISP tutoring session):
1. Student: [typing]

(defun classify-sentence (sent)
2. Tutor: So, that's a very long function name!
3. Student: [typing]

(cond ((or (equal (car sent) 'why)
(equal (car sent) 'how)) 'question)
((and (member 'was sent)

TUTORING: GUIDED LEARNING BY DOING 317

(member 'by sent)) 'passive)
(t 'active)))

All-righty. Yeah. [typing) (classify sentence (mary
4. Tutor: You have to quote the thing here, or else it'll think it's a function

call. [pause] They give you some examples, if you wanna use theirs,=
5. Student: =Oh, sure.= [typing]

'(mary threw the snowball at steve))

6. Tutor: = or you could just make up some.
7. [Computer returns "Undefined variable sentence"]
8. Student: Oops. [pause] Oh, I forgot to put the dash.
9. Tutor: Yup! So it thought it was a variable.

10. Student: [typing] (classify-sentence '(mary threw the snowball at steve))
Nice!

11. Tutor: Good.
12. Student: I think I'll try one more now.
13. Tutor: Do you understand the difference between and and or now?
14. Student: Uhh ... let's see.
15. Tutor: [unintell] //
16. Student: If .. and needs both of them to be true, and then it returns true.
17. Tutor: Um hmm.
18. Student. And or just needs one of them to be true, and it returns true.
19. Tutor: Right.
20. Student: But if both of them art nil in or, then it would return nil.
21. Tutor: Right. And in both of them, or and and, it doesn't necessarily return

the letter t. It'll return whatever true value that it gets to.
22. Student: Uhh I wonderI Nkonder how that worked in my function that

I just wrote.
23. Tutor: That's fine, because the cond knows, cond knows that anything

that's not nil is like true.

We examine tutorial guidance in a number of key sites for learning. First, we
show how tutors respond whea students are on an appropriate solution path.
Perhaps tutors concentrate their assistance on helping students to realize what
they have done correctly and to understand its consequences. For example, the
tutor commented that a step was correct in Utterances 11, 17, and 19 of Example
1, thus encouraging the student to continue with that path in the problem solving,
and elaborated on a correct student action in Utterance 9.

Then we turn to an examination of studenttutor interactions that follow a
problem-solving difficulty. Do tutors provide feedback after impasses? If so,
what form does the tutorial guidance take: Are tutors very directive or subtle?
Do they allow students to find and repair their own mistakes, offering error
feedback only when the student asks, or do they instead intervene frequently to
point out errors? In Utterance 4 of Example I, for instance, the tutor noticed that
the student had failed to include a required quotation mark and simply told the
student how to fix it, thus not allowing the student to find the error herself.

318 MERRILL, REISER, MERRILL, LANDES

The goal of this investigation is not only to characterize the range of tutorial
strategies but also to identify the factors influencing when tutors intervene and
the intervention sn-ategies they use. It should be possible to determine these
factors by identifying patterns and consequences of tutorial intervention. Several
researchers have identified tutorial guidance methods (e.g., Fox, 1991; Graesser,
Person, & Huber, 1993; Lepper et al., 1990; Lepper & Chabay, 1988; Littman,
Pinto, & Soloway, 1990; McArthur, Stasz, & Zmuidzinas, 1990). By and large,
these researchers have focused on a few central episodes that occurred during
longer tutoring sessions. Each of these analyses has highlighted some of the
characteristics of tutorial behavior, thus revealing particular aspects of tutorial
strategies rather than a broad range of behaviors and the situations in which they
arise. Our work examines behaviors in a larger context over a longer period of
time to capture the interplay of these and other tutorial behaviors with student
problem solving. We first review the various views of tutoring suggested by
previous research, displaying the complexity of factors affecting tutorial behavior,
and then formulate the questions that drive our approach.

Fox (1991) argued that tutors provide a "safety net" for students, keeping
them from going off track by offering frequent confirmatory feedback. Tutors
provided a confirmation (e.g., "Yes") to each student step, but if it was delayed
by as little as a second after the step, the student presumed an error had occurred
and began a repair. The tutor helped with the repair as needed, even to the extent
of providing the correct answer if necessary. Generally, however, tutors tried to
remain as subtle and unobtrusive as possible. Thus, Fox characterized feedback
as primarily (though not completely) confirmatory, keeping the student going on
productive paths. The absence of confirmatory feedback was seen by students
as a signal that an error had occurred.

Lepper and his colleagues also considered how tutors scaffold students' learn-
ing, but they concentrated on the motivational aspects of tutorial feedback (Lepper
et al., 1990; Lepper & Chabay, 1988). They argued that a major goal of tutors is to
keep students from becoming discouraged and from blaming themselves when
problem-solving difficulties are encountered. The tutors accomplished this in two
ways. 1..rs4 they emphasized that the problems were hard, thereby redirecting the
blame from the students to the problems and permitting students to attribute the
errors to the difficulty of the problems rather than to a lack of ability. Second, rather
than telling students how to repair errors, Lepper's tutors asked leading questions
that helped students identify and repair errors themselves. Similarly, some teachers
use questions and counterexamples to help students uncover faults in their own
reasoning (Collins & Stevens, 1982; Collins, Warnock, & Passafiurne, 1975).
These analyses suggest that tutors keep students feeling successful by allowing
them to find and repair errors, thereby maintaining their sense of control over the
problem solving (cf. Scardamalia, Bereiter, McLean. Swallow, & Woodruff, 1989),
and to blame crrors on external factors. The Fox (1991) and Lcpper et al. (1990)
studies suggest that much of the work in tutoring sessions is performed by the

TUTORING: GUIDED LEARNING BY DOING 319

student, even after errors. The tutor takes advantage of opportunities to help
students remain sure of themselves and their problem-solving success and to ensure
that students notice any errors. The students are primuily responsible forrepairing

errors, but the tutor will scaffold the process as needed by asking leading questions

and providing the occasional correct answer.
Putnam (1987) also argued that tutors are primarily interested in getting stu-

dents to complete the material. Putnam proposed, however, that tutors do not
rely chiefly on opportunistic planning but rather on curricultan scripts that suggest
a loosely ordered set of tasks to perform during a session to guide the session.
These curriculum scripts are plans that vary little across sessions. In this view,
errors are not particularly important opportunities to increase student under-
standing. Instead, tutors try to get students back on to a correct track by giving
the answer to the problem.

Much as Fox (1991) and Lepper et al. (1990) focused on the active role of
the students, Graesser et al. (1993) argued that tutoring is successful because
sessions are structured to allow students the opportunity to learn actively through
their own questions. Indeed, students ask approximately 100 times more questions
during tutoring than in classroom situations (Kerry, 1987), and learning through
asking questions may be superior to more passive learning (Graesser et al., 1993).
Interestingly, students often fail to understand questions they are asked or the
answers to their own questions, and thus tutors must collaborate with students
to clarify the meaning of questions and answers. Graesser (1993) argued that
these interactions of question, answer, and collaborative search for meaning form
a five-step script, called a dialog frame. Dialog frames are employed throughout
tutoring sessions to guide students' knowledge acquisition and problen: solving.

Other researchers have emphasized the role of errors in triggering curriculum
scripts. For example, Littman et al. (1990) provided tutors with students' PAS-
CAL programs and asked them to plan an intervention. They found that the tutors
structured the entire interaction around feedback for errors. The tutors used a
great deal of domain knowledge about the causes and severity of errors to decide

on an order for remediating them and planned to offer very directive feedback
during the remediation (Littman, 1991). In fact, these tutors used tutorial planning
schemas based on these errors that guided the tutorial sessions. Planning schemas
arise both from domain knowledge and from tutorin2 knowledge and capture,
for example, the fact that repairing an error might be necessary before some
other error could be examined, or the notion that several errors might be indicators
of the same deep confusion. These schemas allow tutors to develop an optimal

structure for the tutoring session that maximizes the success of student repairs.
McArthur et al. (1990) and Schoenfeld, Gamoran, Kessel, and Leonard (1992)

also argued that tutors use scripts to guide their behavior but their analyses extend

to other kinds of student behaviors besides errors as trig2ers for a script. These
scripts, sometimes called tutorial microplans (McArthur et al., 1990), can be

triggered by various actions, including errors, new problem-solving goals, and

BEST COPY AVAIIABLE

320 MERRILL REISER, MERRILL, LANDES

pedagogical goals. Like tutorial planning schemas, microplans are used to decide
how to respond to a student action, with each microplan generating one or many
tutorial responses. Because microplans can be activated by actions other than
errors, however, they offer tutors the flexibility to respond to students' individual
needs and confusions while still accomplishing general pedagogical goals. For
example, according to McArthur et al. (1990), tutors often remind students of
what they are doing and why it is being done, thereby keeping them aware of
problem-solving goals.

This brief review of tutoring has revealed two foci of tutoring research. Some
researchers (e.g., Fox, 1991; Lepper & Chabay, 1988) have concentrated on the
content of tutorial utterances, whereas others (e.g., Littman et al., 1990; McArthur
et al., 1990; Putnam, 1987; Schoenfeld et al., 1992) have chiefly considered the
ways that tutois organize sessions. These two dimensions are essentially independent
tutorial scripts do not necessarily specify the type of feedback to be given.

These studies have revealed a range of tutorial behaviors, including a focus on
positive outcomes (Fox, 1991), the subtle nature of tutorial guidance (Fox, 1991;
Lepper et al., 1990), the assistance of tutorial guidance in helping to structure the
problem solving (McArthur et al., 1990; Putnam, 1987; Schoenfeld et al., 1992),
and response to student errors (Littman et al., 1990). Many of these findings reveal
the active role of students in problem solving (Fox, 1991), questioning (Graesser
et al., 1993), and repairing errors (Fox, 1991; Graesser et al., 1993). Part of this
variation in tutorial behaviors is due presumably to variations in the problem-solv-
ing context. These studies varied in factors such as the ages of students and tutors,
whether the session was remedial or was covering the material for the first time,
and whether the students' participation was voluntary or required.

In general, these tutoring studies have examined portions of tutoring sessions,
characterizing certain interactions of theoretical interest. Although these snap-
shots of tutoring have cast much light on the tutorial process, the complete picture
of tutoring has yet to be developed. Developing a model of tutoring that charac-
terizes the ways in which tutorial assistance leads to pedagogical success requires
examining tutoring over a long period of time with a variety of students to examine
the various contexts in which different tutorial behaviors may arise. Presumably,
all the theories just described capture different aspects of the range of tutorial
behavior. Previous work has not yet analyzed complete tutorial sessions with the
aim of characterizing the contexts giving rise to the full range of tutorial assistance.

The goal of our study is to describe the situations that lead tutors to behave
in the ways we have just reviewed. We argue that tutors guide problem solving
principally in two ways, with situational characteristics affecting the way chosen
and the formation of the guidance. First, tutors offer rapid and explicit feedback
to student actions, telling the student whether or not the action was correct.
Second, in the event of a mistake, students and tutors collaborate in repairing
the en-or. Tutors carefully choose feedback to allow students to perform many
components of the error recovery process (Merrill et al., 1992). We use our

TUTORING: GUIDED LEARNING BY DOING 321

behavioral fmdings along with other problem-solving research to offer a potential
explanation for the success of tutoring.

To investigate these issues, we designed a controlled learning task in which
computer novices learned basic programming concepts with the assistance of a
tutor. fle data presented here were gathered in an experiment contrasting students
working a preset curriculum of LISP programming problems in four different
learning environments. In this article, we present data from two of the four
conditions. The first condition was a traditional one-on-one tutoring situation, in
which students solved LISP programming problems with the constant assistance
of a tutor. To allow us to explore tutors' means of guidance, we audiotaped all
verbal interactions between student and tutor. We used two different tutors, each
with significant tutoring experience, to increase the diversity of behaviors that
would be revealed by the discourse analysis of the tutorial interactions. The goal
of this analysis is to characterize tutorial actions in long-term interventions that
cover a wide range of material. Thus, we chose to emphasize depth of interaction
with each tutor rather than number of tutors.

As we have noted, it is plausible that many factors affect tutorial behavior,
such as the domain being studied, the age of the students, and whether the session
is remedial or not. This study uses nonremedial sessions and college-age students,
thus representing one possible subset of the space of tutorial possibilities. We
focused on students learning new material because these sessions are likely to
encompass a range of problem-solving scenarios, including those in which the
student succeeds and those in which the student encounters obstacles.

The control condition for this article, called the independent problem-solving
condition, consisted of novices covering the same material and solving the same
problems, but without tutorial assistance. Verbalizations were not recorded in
this condition.

This study includes approximately 50 hr of studenttutor verbal interactions.
To analyze these data, we used a style of discourse analysis similar to protocol
analysis (Ericsson & Simon, 1984) to examine the contexts in which different
tutorial actions arose and the outcomes of these actions. Our version of this
technique is very similar to discourse analysis in that it analyzes the language
of two or more people talking during problem solving to reveal the actions
employed durin 2 these dialogues. The important theoretical claim of both protocol
analysis and our approach is that the researcher cannot presume to have full
access to the mental states of the problem solvers and so must focus solely on
information that is completely explicit in the participants' utterances.

By looking at patterns of utterances, a researcher attains limited access to the
mental processes used while solving a problem based only on the information
to which the participant is attr ;ling, as well as any inferences, assertions, or
questions made explicit by the participant. The researcher develops categories
based on the explicit content of each utterancenot what the researcher believes
the speaker meantand catcgorizes all utterances made during the task (Bakeman
& Gottrnan, 1986). These categorizations specify the various problem-solving

322 MERRILL REISER, MERRILL, LANDES

events that occur on the way to a solution. This technique allows us to look for
contingencies between problem-solving context and tutorial action by examining
the transitions from one sort of event tc another.

We developed a coding scheme containing 36 categories designed to capture
the full range of both student and tutor behaviors during problem solving. For
example, we had categories for utterances such as a student asking for help,
setting a goal, or generating a concrete example, as well as for tutorial actions
such as error feedback or goal setting (the complete scheme is described later).
We categorized each utterance made by tutor or student during the approximately
50 hr of sessions. Thus, this study presents a fine-grained picture of tutoring
over an extended period of problem solving.

These extended microanalyses enable us to examine tutorial behaviors across
many different contexts within each student and with different students to deter-
mine which aspects of the behaviors are components of successful tutoring in
this type of domain. In sum, this study enables us to characterize the ways tutors
assist problem solving in procedural domains and to develop a model to show
how these behaviors make tutors so successful.

METHOD

Participants

The participants in this experiment were 16 Princeton Universizy undergraduates
and graduate students recruited through sign-up sheets on campus (8 in the
one-on-one tutoring condition and 8 in the independent problem-solving condi-
tion) Students were randomly assigned to conditions and were paid $5.00 per
hour ior their participation. The participants included an equal number of men
and women, all with no previous programming experience. To minimize indi-
vidual differences across conditions, participant sex and SAT Math score, a good
predictor of success in learning to program (Mayer, Dyck, & Vilberg, 1986),
were roughly balanced across conditions. The overall mean Math SAT of the
participants was 690.

Students in the one-on-one tutoring condition were matched with a tutor of
the same sex. Two Princeton University undergraduates acted as tutors in this
experiment. The female tutor had previous experience tutoring math and science
in high school and was an experienced LISP programmer. The male tutor had
experience teaching LOGO to students in summer camps; he was also an expe-
rienced LISP programmer. Both tutors were unaware of the goals of the study.

Materials

The students worked 56 problems interspersed throughout the first three chapters
of an introductory LISP textbook, Essential LISP (Anderson, Corbett, & Reiser,
1987). The three chap amounted to roughly 50 pages of text and introduced

TUTORING: GUIDED LEARNING BY DOING 323

25 built-in LISP functions, variables and constants, the form of basic function
definitions, and the use of conditionals.

We constructed two cumulative posttests that covered material in the second
and third chapters. These pencil-and-paper posttests consisted of problems re-
quiring students to generate LISP programs to solve small problems, to find and
repair errors in previously generated programs, and to give the output of LISP
functions with given input values.

At all times during the learning session, the students were able to work on a
computer terminal running a LISP interpreter that had been modified to store and
timestamp all keystrokes the students made. The interpreter did not contain the
traditional LISP debugging mode, which often confuses novices. There was also a
simple screen editor available for the students to use to edit function definitions.

Procedure

Students were told to read the material in the textbook and to attempt to solve the
problem sets intermixed in the chapters. The students received a demonstration of
the computer system at the beginning of the first session and a demonstration of
the editing facilities at the beginning of the second sessi, n. In addition to the 56
assigned problems, all students took the untimed posttests alter the second and third
chapters. Students were allowed to work at their own pace and took between 5 and
10 hr to complete the task, distributed over 3 to 5 days. They were free to refer to
the text at any time. All students completed all problems correctly.

One-on-one tutoring. Participants in the one-on-one tutoring condition
worked through the material with the assistance of an experienced human tutor.
The tutors were instructed to use the textbook and all 56 assigned problems but
were not told to use a particular method of tutoring with the students; instead,
they were to rely on their tutoring expertise. The student and tutor were seated
side by side at a table containing the computer terminal and a tape recorder. The
keyboard was placed in front of the student to facilitate the student's typing, but
the tutor could t> pe, if needed. The tutors were instructed to require the students
to solve each problem correctly before moving on to the next problem in the
preset sequence.

Independent problem solving. In the independent j.,robl em-so I v i ng co n-

d ition , students worked through the problems without acccss to a tutor. The
experimenter checked the solutions after each chapter and told the students which
problems, if any, were incorrect. The experimenter did not convey Snything about
the mot ; in the solution but simply reported that the solution was incorrect. The
students were then required to make the necessary repairs. Thus, participants in
this condition were also required to solve all 56 assigned problems correctly.
The students were allowed to ask the experimenter questions if they felt com-
pletely confused. In these infrequent cases, the experimenter would offer some

324 MERRILL REISER, MERRILL, LANDES

small amount of assistance, such as pointing the student back to the relevant
section of the textbook.

Discourse Analysis Methods

To analyze the discourse between tutors and students, we first transcribed the
complete protocols from all 8 student-tutor pairs. Then, we interspersed Lie
records made by the computer of all LISP interactions into the transcriptions to
provide one complete trace of all verbal behavior and interactions with the com-
puter. This complete trace serves as the data for this analysis. The goal of this
analysis is to uncover the behaviors giving rise to tutorial effectiveness and the
situations in which these behaviors occur by examining the patterns of student--
tutor utterances throughout the problem solving.

Before discourse analysis was performed, all transcripts of verbalizations were
divided into smaller units corresponding to codable events. Then, each segment
was Lategorized according to the type of student or tutorial action. This process
is known as segmentation (Bakeman & Gottman, 1986). When dividing a protocol
into segments, the segmenter inust decide when one segment ends and another
begins. Explicit segmentation rules are used to ensure reliable segmentation,
typically by requiring segmenters to make few inferences (Bakeman & Gonrnan,
1986). One way to measure the success of these niles is to measure percentage
agreement, capturing the extent to which segrnenters divide the protocol similarly.

In this study, we used a method for breaking the discourse into events we
call segmentation by idea, based on identifying when a spe.':er is discussing a
new point. MI discourse on my one point by one speaker becomes one segment.
Thus, each time a new idea is entered into the discourse, a new segment is
created, allowing detailed access to each topic of any speaker's discourse.

Segmentation by idea differs from turn-taking segmentation, a very common
scheme (e.g., L. Bloom, Rocissano, & Hood, 1976), in that turn-taking methods
typically attempt to take the whole utterance of a speaker (one turn) as the unit
of analysis to be categorized, whereas segmentation by idea allows a single
utterance to be broken up if it expresses multiple points.

Example 2 (a student-tutor interaction afier the segnrentation
and categorization process):

1. TFA Tutor: So in this example down here'? Sec how they have two
separate=

Student: Yeah.
Tutor: =parameters.

2. SC Student: Yeah.
3. Comm Tutor: ... So, if you
4. SC Student: That makes sense.
5. TSP Tutor: called insert-second on, like, ... dog, and then the list (bird

cut egg),

TUTORING: GUIDED LEARNING BY DOING 325

Student: Hmm.
Tutor: =then item would always refer to dog, for your function

call,.
Student: Right
Tutor: nd oldlist vrouki a....ays refer to that list, bird, cat, what-

ever.

6. SC Student: OK.
7. TSG Tutor: And then you have to figure out what exactly you want it

to do.
8. SC Student: Right.
9. TElab Tutor: Using those functions we learned yesterday. [pause)

10. TFA Tutor: This is a, this is a good example, I like this ... thing. 'Cause
this shows how LISP is actually going through and inter-
preting it.

11. TSP Tutor: So, let's say you typed in this, umrn, function call ... func-
tion definition of double. Telling you the parameter is num,
so there's only one parameter, you're only going to have
one argument. But then if they call, it you call double, on
this other function, it's kind of interesting to see how it
actually evaluates that because this .whole list, (4- 5 10), is
going to eventually be assigned to num.

12. SC Student: OK.
13. TSP Tutor: Umm, but first, okay, it looks at double, it knows this is the

definition it's gonna use, and then it has to evaluate that
argument. So it works inside-out, like it did, like we were
looking at yesterday.

14. TSP Tutor: It figures out what 5 plus 10 is, gets 15, then it assigns 15
to num, binds num

Student: Mmm hmm.
Tutor: to 15, that's the words they use, and uhh, so then, in

the rest of the body, [laughs] that one line, num substitutes
is substituted with 15. So it looks at the body, (* num 2).
num is evaluated and num gets 15, 2 stays itself, and then
it applies the multiplication, multiplies 15 by 2, and this line
returns 30. Now whatever the body of the function returns,
the whole function will return, so actually 30 will get printed
out there.

15. SC Student: That makes sense.

Consider, for example, the protocol shown in Example 2, which is both seg-
mented and categorized (abbreviations are described later and appear in Appendix
B). In this part of the session, the tutor is explaining how LISP matches parameters
in a student's function to actual values when that function is called. Note that a
single tutorial utterance was divided into three categorizable segments (Events
9 to I 1 in Example 2), whereas it would have been classified as a single turn in
a turn-taking scheme. Segmentation by idea allows individual problem-solving
events that occur in a series within one participant's comments to be considered

BEST COPY AVAILABLE

326 MERRILL, REISER, MERRILL, LANDES

separately rather than together. Conversely, a segment can continue across an
utterance of the other person if the speaker fails to acknowledge the second
person's speech in any way. Consider, for example, Event 5 in Example 2. Here
the tutor dces not verbally acknowledge any of the student's comments and
continues describing the same concept. Thus, this entire interaction was seg-
mented as one event. This method thus allows each segment to capture a single
complete problem-solving event.

To ensure the reliability of our scheme, two of us (D. Merrill and S. Merrill)
independently segmented all the protocols, and differences between segmenta-
tions were resolved between us. Instructions for segmentation are shown in Ap-
pendix A. We initially agreed on 98% of segments, calculated across all protocols,
indicating that the rules we used could be implemented very reliably (Bakeman
& Gottman, 1986) and that there were very few differences to resolve. This study
analyzed approximately 15,000 segments.

After segmenting all protocols, we assigned each segment to 1 of 36 categories
that captured each student or tutor action. We developed these categories to
represent the information expressed throughout the problem solving. They enabled
us to specify the problem-solving contexts that lead to the various tutorial behaviors
and to examine the pedagogical strategies of the tutors. We designed categories to
capture tutorial behaviors highlighted as crucial for pedagogical success in the
theories of tutoring presented earlier. For example, we created categories for tutor
confirmatory feedback (Fox, 1991), tutor motivational feedback (Lepper et al.,
1990), and tutor goal remindings (McArthur et al., 1990). We also designed
categories for events viewed as important to learning in general, such as making
assertions, trying (_:I.Litions, setting goals, and offering explanations. Definitions
and examples of each category are included in Appendix B. Each category was
designed so an utterance could be classified by the explicit meaning of the utterance.

The categories of student actions in the studenttutor discourse are:

I. The student constructs a solution to a problem (Student Problem-Solving
Action).
a. Student Correction (SCr).
b. Student Elaboration (SElab).
c. Student Example (SE).
d. Student Focuses Attention (SFA).
c. Student Indicates Difficulty (SID).
f. Student Indicates Lack of Understanding (1LU).
g. Student Reads (Read).
h. Student Refers (SRefer).
i. Student Sets Goal (SSG).
j. Student Types (Type).

2. The student asks for help from the tutor.
a. Assist Plan Assertion (APA).

TUTORING: GUIDED LEARNING BY DOING 327

b. Assist Plan Question (APQ).
C. Assist Understanding (AU).
d. Student Informational Request (SIR).

3. The student indicates that the tutor's utterances were understood.
a. Student Confirmation (SC).

4. The student checks the current answer.
a. Student Simulates Process (SSP).

5. Miscellaneous non-task-related utterances.
a. Student Comment (Comrn).

The categories of tutorial actions in the studenttutor discourse are:

I. The tutor performs a portion of the problem solving.
a. Tutor Example (TE).
b. Tutor Focuses Attention (TFA).
C. Tutor Reads (Read).
d. Tutor Refers (TRefer).
e. Tutor Types (Type).

2. The tutor offers guidance for the student's ongoing problem solving.
a. Tutor Confidence Builder (CB).
b. Tutor Hint (Hint)'.
c. Tutor Indicates Difficulty (TID).
d. Tutor Sets Goal (TSG).
e. Tutor Supportive Statement (SS).

3. The tutor confirms a student step (TCS).
a. Tutor Confirmation (TC).
b. Tutor Elaboration (TElab).

4. The tutor gives error feedback after an incorrect student step.
a. Tutor Correction (TCr).
b. Tutor Plan-Based Feedback (PBF).
c. Tutor Surface-Feature Feedback (SIT).

5. The tutor attempts to assess the student's understanding of a topic.
a. Tutor Probe (Probe).
b. Tutor Prompt (Prompt).

6. The tutor helps the student check the current answer.
a. Tutor Simulates Process (TSP).

7. Miscellaneous non-task-related utterances.
a. Tutor Comment (Comm).

The coding scheme was designed to depend on the content of the utterance
rather than on the form of the speech act used. Although the choice of speech
act could affect the way a student responds to an utterance (Graesser et al., 1993:
Lepper et al., 1990), we viewed the content of the utterance as most representative
of the problem-solving state of the student and tutor. For our analyses of tutorial

328 MERRILL REISER, MERRILL. LANDE.S

responses to problem-solving situations, we wanted to focus on the information
communicated rather than on the style in which it was expressed. This information
defines the situations to which the tutors were responding. Thus, "Noput a
quote there." and "Don't you need a quote there?" are both categorized as Tutor
Corrections, because each conveys the same information, namely that the student
needs a quotation mark in the program.

We categorized each segment in only one category, because more powerful
analyses are possible for mutually exclusive categories (Bakeman & Gottman,
1986). Example 2, shown earlier, displayed an interaction after both segmentation
and categorization. Inially in Example 2, the tutor pointed the student to an
example in the text. This is a Tutor Focuses Attention event. The student re-
sponded affirmatively to this point, offering a Student Confirmation. Soon there-
after, the tutor worked through the solution as the computer would, an action
that falls into the category Tutor Simulates Process. After this Tutor Simulates
Process, the student offered a confirmation, and the tutor began a discussion of
how LISP treats function parameters.

All protocols were independently categorized by two of us (D. Merrill and S.
Merrill). The rules we followed are presented in Appendix A. After completing
all categorization, we examined coding reliability using Cohen's kappa (Bakeman
& Gottman, 1986; J. Cohen, 1960). Kappa captures the agreement among multiple
coders but adjusts the resulting value for the amount of agreement between coders
that would be expected due to chance. A value of kappa greater than .70 is
considered indicative of a reliable coding scheme (Bakeman & Gottman, 1986).
The categorization in this study was highly reliable, with kappa = .81.

Our categorization scheme based on segmentation by idea does have potential
limitations. Recall, for example, that each utterance is categorized as one event.
It seems possible, however, that an utterance could in fact serve several conver-
sational goals. For example, an utterance classified as a Tutor Elaboration could
also contain a Tutor Confirmation: "Yes, right, you remembered that last returns
a list." Because there is no explicit evidence of a change of topic, these would
be segmented to2ether and coded as one utterance, even though the utterance
appears to serve two pedagogical goals simultaneously: to offer a confirmation
and to elaborate on information present in the solution. In the analysis presented
shortly, we take the overlapping goals of different categories into account by
merging certain categories that overlap significantly.

This limitation did not appear to interfere with categorization. Our results
indicate that it was in fact possible to assign each utterance to a single category
with high reliability. Thus, constraining each utterance to only one category
appears to be a reasonable principle for categorizing these problem-solving events.

In addition to identifying each problem-solving event, we also identified those
actions that contained an erroneous assertion or solution component. Errors play
a critical role in learning. For example, explaining why an error occurred may
help novices avoid the error in the future and highlight areas of confusion (Chi,

TUTORING: GUIDED LEARNING BY DOING 329

Bassok, Lewis, Reimann, & Glaser, 1989; Schank & Leake, 1989). Errors can
also lead to serious floundering, however, potentially interfering with learning
(Anderson, Boyle, & Reiser, 1985; Lewis & Anderson, 1985; Reiser, Beekelaar,
Ty le, & Merrill, 1991). Tutorial assistance provided for locating and repairing
errors has become a focus of research in both human and computer-based tutoring
(e.g., Anderson et al., 1985; Littman et al., 1990; McArthur et al., 1990; Reiser,
Kimberg, Lovett, & Ranney, 1992). Thus, errors represent particularly critical
events around which to focus our analysis of tutoriat strategies and the associated
learning outcomes. To achieve this goal, we located and categorized every error
and then identified the utterance that indicated an error had occurred, according
to the following procedures.

Again, two of us independently looked through all the utterances and computer
interactions to locate student errors. Errors included student goals, that were not
needed in the problem, required goals that were forgotten, incorrect assertions
about functions or concepts, and syntactic mistakes, as well as slips such as
typographical mistakes. In contrast to the categorization of conversational events,
in this analysis we considered the speech act of the utterance. We did not cate-
gorize questions as errors, because questions are explicit requests for information
rather than situations in which a student asserts something to be true that is false.
Thus, Utterance 1 in Example 3 was marked as an error because the assertion
about append is false, but Utterance 2 was not categorized as an error even
though the fact proposed is incorrect.

Example 3:

I. OK, append, append, let's see, that's the one that takes an atom and a list ...
2. Is append the one that takes two atoms?

Focusing on nonquestion mistakes enables us to see precisely what tutors do
when students make a mistake rather than what happens following an explicit
request for information. We were able to identify the errors reliably, kappa =
.75. There were 1,242 errors in the problem-solving sessions, or approximately
25 per hour. More errors occurred during the third chapter, as the material became
more difficult, but substantial numbers of errors occurred during the first and

second chapters as well.
After identifying the erroneous actions, we categorized each one. This cate-

gorization of errors was designed to determine if tutors responded differently to
errors of varying types. Accordingly, our error categories captured mistakes that
have been discussed as central for learning, such as errors in the syntax of
solutions (Anderson et al., 1985; Reiser et al., 1991), confusions about the se-
mantics of basic operators (Anderson, 1989; Reiser et al., 1992), problems with
goal structures (McArthur et al., 1990; Sing le)', 1990: Soloway, 1986; VanLehn,
1990), and other errors that one would expect to occur in such a task, such as
typographical errors. We originally designed nine error categories, including four

330 MERRILL REISER, MERRILL, LANDES

TABLE 1
A Listing of Each Error Category Used,

Its Frequency of Occurrence, and Its Definition

Error Type Frequency Category Definition

Typographical 360 A typing error, involving a misspelling or an illegal
keystroke.

Syntactic 435 The addition of an unneeded parenthesis or quotation mark
or the deletion of one that is needed.

Semantic

Operator 123 Asserting that a function does something it dces not do or
attempting to apply a function when it cannot be applied.

Concept 59 An error relating to the concepts: atom, list, nil, variable, or
elements (of a list).

Goal

Incorrect goal 178 Stating a goal to achieve that is not needed in the problem or
will not help the student solve the problem.

Skipped goal 69 Skipping a goal that is needed in the problem. This could
occur when setting up an initial goal structure or when
solving the problem, and requires explicit evidence that
the student has failed to achieve some subgoal.

slightly differing variants of one error group called semantic errors. In fact, we
found occurrences of only two of these four variants among the student errors,
so we discarded the two empty categories. We also initially considered "dead
code," a situation in which extra functions are left in a solution but do not affect
it in any way, as a potential error type. The tutors never responded to these
situations, however, and the students' solutions actually produced the correct
result, so we did not consider these 18 cases in our analyses of student errors.
The remaining six error categories shown in Table 1 included 1,224 errors. Once
again, two of us independently categorized the errors. The categorization was
reliable, kappa = .70.

Finally, after locating the errors, we looked to see which participant indicated
that an error had occurred and how the indication was performed. For example,
the student might make an error and then notice it and begin a repair. In Example
4, the student made a syntactic errot in the Else clause of a conditional by putting
two parentheses instead of just one before the t and then flagged the error herself.

Example

Student:

4:

[Wing]
(defun classify (arg)

(cond ((numberp arg) 'number)
((null arg) ' nil)
at

Student: Whoops, I don't need that many.
Tutor: Righ:, exactly. You caught yourself.

TUTORING: GUIDED LEARNING BY DOING 331

Alternatively, the tutor might comment on the error, as in Example 5, which
occurred earlier in the same problem.

Example 5:

Student: [typing]
(defun classify (arg)

(cond ((numberp arg) number
Tutor: Now actually, urn, for number, you want the actual word.
Student: So I have to put this [a quotation mark].
Tutor: Yes, you have to put a quote.
Student: [typing]

 ... 'number)

The student's self-initiated correction in Example 4 and the tutor's comment
in Example 5 indicated that an error had occurred. We call such utterances error
flags. We classified an utterance as an error flag if it indicated that a problem-
solving event was incorrect_ Error flags ranged from very specific, as in Example
5, to very general, such as the tutor saying "Look back up therethere might
be a problem." General utterances alerted the student that one of the recent steps
contained an error but did not tell which step was wrong.

We did not restrict the categories of utterances that could serve as error flags.
Of course, given the nature of some of the category definitions, certain categories,
such as Tutor Confirm Step, were not used to indicate that an error had occurred.
Thus, although all categories could serve as possible flags, only a subset were
actually used as error flags. Assist Plan Assertion was IL.: most common error
flag from students. Tutor Error Feedback was the most common tutor error flag,
followed by Tutor Prompt. Two of the authors reliably marked the flag for each
of the 1,224 errors, kappa = .75.

Errors did not always result in an incorrect solution attempt. In some cases,
students made an error in a step but immediately located it and began the repair
within the same event, as in Example 6.

Example 6:

Student: [typing] (my-or a'a

This student did not put a required quotation mark before the constant a, but she
immediately repaired the error without assistance. We marked this as an error
with an immediate flag by the student. Even though the student needed no help
in this case, she experienced an impasse that had to be overcome. To account
for all impasses and their repairs, we included these cases in the analyses as
well. Furthermore, in some of these cases in which the student repaired his or
her own error, there was no explicit utterance that marked the error. Instead, the
self-correction behavior was considered as both flagging and repairing the error.

332 MERRILL REISER, MERRILL, LANDES

In many cases, the error flag only initiated the error repair process, which
could require several events to complete. To determine how many events were
required to repair errors, two of us independently located the event that achieved
the repair for each error. The repair sometimes occurred within the same event,
as in Example 6, or otherwise occurred a few events later. Finding the repair
location, given the location of the error itself, was done reliably, kappa = .90.

Having described the categorization of each utterance, the finding of all errors,
the identification of utterances beginning an error recovery process, and the
location of the end of each error episode, we next turn to analyzing these data.

RESULTS AND DISCUSSION

Before describing the tutors' methods of assisting the students during the learning
sessions, we must demonstrate that the tutors were in fact effective. To do so,
we analyzed the students' posttests and the duration of the learning sessions.
Recall that all students, regardless of condition, worked on all the problems until
they were all correctly solved. The tutored students completed the material in
just over half the time that the nontutored students required (300 min vs. 550
min), F(1, 13) = 24.5, p < .01. There were no differences between the groups'
performance on the posttest. Students in the one-on-one tutoring condition re-
ceived 97% of the points possible, and the independent problem-solving students
scored 95% on average. This lack of posttest differences does not indicate a lack
of pedagogical effectiveness for tutors, because one would expect that solving
all the problems correctly should lead to significant domain mastery (Anderson
& Corbett, 1993; Newell, 1990). Thus, it is not surprising that both goups were
able to achieve the same degree of understanding of LISP. The important dif-
ference is the time it took to do so: The tutored students achieved equivalent
domain mastery, in spite of spending substantially less time on task than the
independent problem-solving students. Thus, the tutors did provide clear cognitive
benefits, so we next examine the protocol data to specify the actions performed
by the tutors and the situations in which they occurred.

In this section, we present our analyses of the approximately 15,000 student
tutor interactions over the 50 hr of sessions to describe the ways tutors assist
students in developing domain mastery. We present a model to show why the
assistance should be helpful. Examples 1 and 2 demonstrated the complexity of
the studenttutor interactions, including confirmations, corrections, and goals-
setting. Our fine-grained identification of all student actions and tutorial responses
in extended problem-solving sessions allows us to investigate how tutors support
and guide students' problem solving.

Domain mastery typically begins by studying expository text and annotated
examples (Chi et al., 1989; Faries, 1991; Gentncr, 1983; Gick & I-Iolyoak, 1980;
Piro lli, 1991; VanLehn, Jones, & Chi, 1992). Elaboration of declarative material

TUTORING: GUIDED LEARNING BY DOING 333

via questioning, predicting, and explaining can facilitate solving problems later
(Chi et al., 1989; Graesser, 1992). Learning also takes place at the critical point
when students attempt to apply declarative knowledge gained from the text and
examples to solve new problems (Anderson, 1983, 1987; Trafton & Reiser,
1993a). We are concerned with the overall development of domain expertise in
these learning sessions rather than the differential roles of solving problems and
understanding expository materials. Thus, we consider student events occurring
either while reading or while working on assigned exercises as problem-solving
actions and focus on the role of these events in learning.

Protocol aralyses typically make use of new categories created by combining
the originally coded events (Bakeman & Gottman, 1986). Often the original
categories are coded at an extremely fine grain, and then clusters of events taken
together represent functional groups. For example, several of the original student
events taken in combination describe the problem-solving process. Individually,
these student events capture different actions that could take place during problem
solving, such as asgertions and elaborations made while reading the text, generating
or studying a concrete example, setting goals, or creating new LISP expressions.
All of these are categories in our coding scheme and wt, re observed ia our study.
However, the fine distinctions between them are not relevant for understanding
how the tutors assisted overall problem solving, includiiig, encoding the text and
examples. Thus, we combined these categories into a nev category called Student
Problem-Solving Action, which is used throughout the su :ceeding analyses.

In addition, we created another higher level categ, ry, Tutor Confirm Step.
Recall that earlier, we pointed out that segmentation) y idea often led to Tutor
Elaborations, including explicit confirmations. Becaust all segmentation was per-
formed before categonzing any utterance, we could lot go back and break out
the confirmatory portion from the elaborative portio., of a Tutor Elaboration that
contaimd a confirmation. Thus, we decided to infiude Tutor Elaborations con-
taining explicit confirmations in Tutor Confirm Step. Furthermore, elaborating
on a student assertion usually implies an implicit confirmation, because the new
information is added to the tacitly agreed-to student action. Therefore, we defined
the category Tutor Col,firm Step to include utterances originally categorized as
Tutor Confirmations as well as utterances originally coded as Tutor Elaborations,
thereby focusing on the role of confirmatory feedback in problem solving.

Figure 1 shows the events in the tutoring sessions, displaying the results of
our categorization of the data. Each object in Figure 1 is a type of event. The
half circles are tutor events such as Tutor Confirm Step, in which the tutor offered
confirmatory feedback to the student. The squares within circles are student
events, such as Student Problem-Solving Action, the category that captured the
actions while students solved problems and tried to interpret the text.

In Figure 1, the arrows represent the most important source of information.
They show that some event type followed sonie other event type. To construct
the figure, we examined the frequency with which each event type followed all

334 MERRILL REISER, MERRILL, LANDES

RAM P/X 1.0395

Tutor
guidance

Tutor
error

feedback

Tutor problem
solving
action

Student
ask for

assistance

Student
problem
solving
action

Student
confirmation

Tutor
assess

understanding

Tutor
confirm

step

Tutor
check
answer

Student
check

answer

FIGURE 1 A presentation of student and tutor actions and their chronological relations.
The half circles rt:present tutor events, and the squares within circles represent student eents.
The arrows coonecting objects describe which events followed other events in the data.
Heavier links inoicate high-frequency transitions that occurred more than 103 times.

other typcs of events. We then examined this transition analysis (Bakeman &
Gottman, 1986; Fisher, 1991) for the most common chronological sequences,
enabling us to specify precisely what sorts of events occurred and.how they were
related during the sessions. The arrows represent all the transitions between one
event and another that occurred more often than 10 times in the protocols. The
wide arrows are the most frequent transitions in the data, those that occuired
more than 100 times. For example, Tutor Confirm Step often followed Student
Problem-Solving Actions. For completeness, the entire transition matrix is pro-
vided in Appendix C.

TUTORING: GUIDED LEARNING BY DoING 335

In addition to the combined categories Student Problem-Solving Actions and
Tutor Confirm Step, Figure I contains a category called Tutor Error Feedback.
As described earlier, the manner in which tutors respond to errors can be crucial
for learning. For the initial picture of the tutoring sessions shown in Figure 1,
we merged three categories of explicit error feedback (Tutor Correction, Tutor
Surface-Feature Feedback, and Tutor Plan-Based Feedback) into Tutor Error
Feedback. The categories included in Tutor Error Feedback contain only tutorial
utterances that provide direct and explicit guidance after errors, but these events
do not exhaust all possible tutorial responses to student errors. Any utterance
could, in principle, be used in response to an error.

Because we believe that most learning occurs during the sort of events captured
in Student Problem-Solving Action (Anderson, 1983; Laird et al., 1986; VanLehn,
1988), we focus on this category in the remainder of this article. Specifically,
we present two sorts of analyses of tutorial assistance. First, we discuss the means
by which tutors help keep the students' problem solving on productive paths via
confirmatory feedback, error feedback, and other guidance. We then turn to a
finer examination of errors to uncover the ways tutors offer feedback, to see if
tutors in fact respond differently, depending on the nature of the student's error,
and to examine how the student and tutor work together to repair errors.

How Tutors Keep Problem Solving Productive

In this section, we examine the strategies tutors use to provide guidance to
students while they are in the process of understanding and solving problems
that is, engaged in Student Problem-Solving Actions. This section considers the
ways tutors help keep student problem solving productive and continuing. We
look initially at correct problem-solving actions to see how tutors respond and
then turn to responses following impasses and errors.

Confirmatory feedback. How do tutors respond when students make cor-
rect problem-solving actions? Fox (1991) argued that tutors offer confirmatory
feedback after correct steps. Our category Tutor Confirm Step captured this sort
of tutorial feedback. Of the 3,506 Student Problem-Solving Actions in our data,
1,495 (44%) were followed immediately by a Tutor Confirm Step. This infor-
mation is represented by the wide arrow from Student Problem-Solving Action
to Tutor Confirm Step in Figure 1. The remaining 56% of transitions from Student
Problem-Solving Action consisted primarily of occurrences of one Student Prob-
lem-Solving Action following another and Tutor Guidance utteranCes following
a Student Problem-Solving Action.

Notice that the 44% was calculated using all Student Problem-Solving Actions,
including erroneous steps. When considering only the 2.261 correct problem-
solving actions, the picture becomes even more striking. with 66% of correct
Studcnt Problem-Solving Actions receiving confirmatory feedback. Almost no

336 MERRILL, REISER, MERRILL, LANDES

incorrect steps received confirmatory feedback. Thus, although tutors commonly
confirm correct actions, they appeared to be careful not to offer confirmatory
feedback after erroneous actions.

These problem-solving steps were not, by and large, complete solutions. This
high proportion of confirmations did not reflect situations in which the student
had created an entire solution to which the tutor responded, "Yes." Most solutions
required multiple problem-solving actions, even when no errors occurred. In fact,
problems that called for definitions of new LISP functions, as in the second and
third chapters, required an average of 10 correct events to complete, even with
no erroneous events. These problems received an average of 6 Tutor Confirm
Steps per problem as well. Thus, tutors offered confirmations very oftenfor
66% of correct eventsand these confirmations occurred during ongoing problem
solving, rather than at its successful completion.

To emphasize further that students received these confirmations during prob-
lem solving, note that 43% of Tutor Confirm Steps were followed immediately
by another Student Problem-Solving Action. Example 7 gives an example of the
use of Tutor Confirm Steps during attempts to solve a problem called.first-elem.
The student initially set up the first part of the expression to be typed, and the
tutor responded with a confirmation (Tutor Confirm Step). The tutor offers further
confirmations as problem solving continues through the problem.

Example 7 (examples of Tutor Confirmations in ongoing problem solving):
1. SPSA Student: So, you do defun, utn, first-elem.
2. SPSA Student: [typing) (defun first-elem
3. TCS Tutor: Right, that's the function name.
4. TID Tu;or: Now comes the tough part.
5. SPSA Student: Now comes the parameters.
6. TCS Tutor: The parameter list, right.
7. SPSA Stuc'ent: So, it just needs to have a list.
8. TCS Tutor: Urn hum.
9. SPSA Student: It would just be list.

10. SPSA Student: [typesl (list)
11. TCS Tutor: Sure.

It might be suggested that these confirmations are in fact simply conversational
requirements, because people arc expected to respond to others' statements (Gdce,
1975). If this were the case, tutors would have c:.,nfirmed all steps. Tutors did
not confirm all steps, however, but offered confirmations only in response to
correct steps and responded to errors with other types of tutorial actions. Thus,
tutor confirmatory feedback v,as informative and told the student that the previous
action fell onto a profitable solution path.

Tutors could also encourage students to continue on the current, productive
solution path via Tutor Guidance. A tutor response such as "So next we need

TUTORING: GUIDED LEARNING BY DOING 337

the Else case" includes an implicit confirmation of the previous step. In other
words, the tutor is basically saying, "OK so far, now the Else case is next." Tutor
Guidance could include utterances that were motivational in nature, such as
"Yeah, you're doing just fine," which also encouraged the student to con.inue
along the correct path. Tutor Guidance events made up another 16% of events
subsequent to the 3,506 Student Problem-Solving Actions and an additional 70%
of events following correct Student Problem-Solving Actions. Thus, Tutor Guid-
ance utterances that contained an implicit confirmation represent another impor-
tant means by which tutors kept problem solving productive by encouraging
students to continue on a productive solution path.

These results support the claims of Fox (1991). They show that tutors do offer
confirmatory feedback throughout the problem-solving process. Correct events
usually receive confirmations immediately, and incorrect events do not receive
confirmatory feedback. When students are on a promising solution path, this type.
of encouragement appears to be one method by which tutors help guide students'
problem solving. We next turn to the tutorial responses that followed errors.

Responses to incorrect problem-solving steps. Not all solution steps
are correct. Errors offer a particularly crucial opportunity for learning. Some
researchers have argued that recovering from errors carries great potential dangers
(Anderson, 1983; Lewis & Anderson, 1985; Sweller, 1988), whereas others have
argued that recovering from and explaining impasses is the key to effective
learning (Chi et al., 1989; Laird et al., 1986; Schank & Leake, 1989; VanLehn,
1990). First, we consider how errors are uncovered in the problem-solving ses-
sions. How do tutors help students recover from errors? Do tutors allow students
to locate and repair their own errors, a strategy emphasized by some learning
researchers (Papert, 1980; Schank & Leake, 1989), or do tutors find the errors
for the students?

Errors were not left unnoticed for very long. In fact, 75% of all errors in the
sessions were indicated within 2 events. Typically, an error occurred, the student
or tutor made one other utterance, and then the error was flagged. Recall that an
error flag is the initial indication in the discourse that an error has occurred, and
the flag could be any of the different types of events we coded, such as a Tutor
Focuses Attention: "Umm, look back up therethere might be a problem." Thus,
these problem-solving sessions were not typified by long exploratory searches
during which errors might occur and not be noticed immediately, a peda2ogical
approach sometimes advocated (e.g., Papert, 1980). Example 8 shows a typical
instance of a student flagging her own error, and Example 9 shows a tutor
flagging a student error.

Example 8 (a typical example of an error flagged by the student):

1. SPSA Student: [typing] palp (a bccb a))
[error them needs to be a quotation mark before the list)

BEST COPY AVAILABLE

338 MERRILL REISER, MERRILL, LANDES

2. SCr Student: Oh, I didn't put the, uh //
[flag for previous step)

3. TElab Tutor: Quote.
4. SC Student: Quotes.
5. TCS Tutor: Right.
6. SPSA Student: [types repair]

Example 9 (an example of the tutor flagging a student error):
I. SPSA Srudent: [Pause.] So you could use or. [unintel.] Cond. [Pause.] Urn,

equal [pause] argl , true [pause]
[error the argument may not be equal to true]

2. SFF Tutor: Right. But what if it was, like, the atom dog. That counts
as true=
[flag for error in Step 1]

3. SC Student: =Uh-huh.

Because error repair was begun very rapidly, we next turn to the question of
who noticed the errors. Fox (1991) and Lepper et al. (1990) argued that the
student plays a major role in locating and repairing errors. In fact, of the 1,224
errors identified for analysis, almost half (47%) were noticed by the student.
What sorts of errors did the students catch? Interestingly, most of the errors
caught by the students (91%) were typographical errors or syntactically incorrect
LISP expressions. Although there may be pedagogical advantages for students
to find and repair many different sorts of errors, including errors involving prob-
lem goals, for example, students generally did not do so. Either they simply
could not find these errors or our tutors did not allow them the leeway to do so.
Next we consider how tutors responded to student errors.

Tutors flagged approximately 53% of all errors. Of the errors flagged by the
tutor, only 41% were typographical or syntactic errors. The remaining 59% were
errors relating to goals and to the meanings of LISP operators. Thus, tutors
mainly caught the more difficult errors, whereas students mainly caught the
low-level errors.

Figure 2 shows the number of errors flagged by the student and the tutor as
a function of the number of events intervening between the error and the repair.
Most student-flagged errors were caught very quicklyoften on the same event,
with a lag of zerowhereas many of the tutor-flagged events were more removed
from the impasse. Most, but not all, of the tutor flags occurred very quickly after
the error, usually on the next event. Thus, tutors flagged most of the more serious
errors related to goals and to the meanings of LISP operators and generally did
not allow students to find and repair their own errors, because the tutors com-
mented on most errors immediately after the error occurred if the student did
not notice it.

Analysis of the events following the error flags suggests that thc tutors' error
flags were used during the students' ongoing problem solving. Sixty-three percent

600

500

400

200

100

TUTORING: GUIDED LEARNING BY DOING 339

RAMO ,11.14.1.5

al Tutor-caught errors

El Student-caught errors

Lag

2-3 44.

FIGURE 2 The number of events that intervened between a student error and the flaegine
of that error by the student or the tutor. A lag of zero indicates that the error was flagged
during the same event within which it occurred.

of tutor error flags were followed immediately by another Student Problem-Solv-
ing Action, thereby indicating that students received the assistance and began
implementing a repair. Almost all the remaining tutor error flags were followed
by Student Confirmations. Although some have suggested that students have
great difficulty understanding error feedback given by instructors (Graesser et
al., 1993; Moore & Swartout, 1989), the students in this study seemed to under-
stand the error flags very well, because most tutor error fla2s were not followed
by requests for clarification and elaboration. Thus, error flags, like confirmations,
are important to the ongoing problem-solving process.

These analyses have suggested that tutors did not allow students a great deal
of time to discover their errors; if the student did not comment on an error almost
immediately after it happened, the tutor did. Despite the potential benefits of
students finding and repairing their own errors, students found mostly syntactic
low-level errors. Repair of the more complex errors was at least initiated by the
tutors. In subsequent analyses to be presented shortly, we consider the type of
guidance tutors provided on errors and how the error recovery episode progressed.

Summary of tutorial guidance. In this section, we considered how tutors
offered interactive Support for student problem solving. We showed that tutors
offered rapid confirmations and supportive guidance to correct student actions,
even small actions such as interpreting a short text section or creating individual

340 MERRILL REISER, MERRILL. LANDES

components of a solution. These confirmations were more than the conversational

politeness of acknowledging the other speaker, because the tutors offered con-

firmations only to correct steps. In contrast, incorrect steps were flagged very

rapidly. Students caught almost half the errors, but the errors they noticed were

primarily low-level errors such as typing mistakes or syntactic problems. The

remainder of the errors were caught by the tutor, usually within 1 or 2 events.

Thus, tutors were very much involved in the ongoing problem solving, because

most student steps received some sort of tutorial response that helped guide
problem solving, either a confirmation or notification of an error.

These analyses support a view of tutoring as guided learning by doing. When

a student solved problems alone, he or she may have often had difficulty deter-

mining whether a step was correct or not. When a tutored student made a correct

step, however, the tutor intervened to say it was correct, thus helping problem

solving to continue. Also, when a student working alone made an error, he or

she may not have noticed it for some time, making repair difficult and floundering

likely. Tutors ensured that any errors were noticed very quickly, jumping in to

tell the student that the step was incorrect, if needed. These confirmations and

error flags served to guide the ongoing problem solving and keep it productive.
Having focused on the ways tutors help keep ongoing problem solving pro-

ductive, we next turn to a more precise examination of the errors made during

the learning sessions, focusing on the type of assistance tutors provided when
they offered feedback. We describe the ways tutors and students worked together

to repair errors, paying particular attention to the ways the tutors and students

dealt with different types of errors.

Errors and the Content of Feedback

Considerable research has focused on the manner in which tutors scaffold stu-

dents' recovery from errors and impasses. For example, Fox (1991) and Lepper

et al. (1990) artwed that tutors attempt to indicate errors to the student subtly,

so that the student can perform the repair, whereas Littman et al. (1990) argued

that tutors offer explicit error feedback. The content and style of error feedback

can have significant effects on learning and motivation (Lepper et al., 1990;

McKendree, 1990; Reiser, Copen, Ranney, Hamid, & Kimberg, in press), and,

thus, understandin2 how tutors respond to students' errors can cast further light

on how tutors guide their students.
Recovering from an impasse or error entails several components (Merrill et

al., 1992). The first stage requires realizing that an error has occurred. Then, the

erroneous features of the solution must be located, and the erroneous portion

must be replaced with a successful fulfillment of the goal. Finally, it may be

helpful, although not necessary, to understand why the error occurred. These

components are fundamentally distinct, even though they usually occur as a

group. A student might perform all the components, thereby completing all the

TUTORING: GUIDED LEARNING FIY DOING 341

error recovery. At the other extreme, a tutor might tell a studeia exactly what
went wrong and how to repair it. The error recovery process could also be a
collaborative enterprise, with the tutor scaffolding the recovery as needed to get
problem solving back on track but allowing the student to perform much of the
work. If the tutor's main goal is to get the problem solving back on track, we
would expect tutors to perform most of the error recovery components for the
students through feedback. Alternatively, if errors are used as opportunities for
lean ing, tutors might allow students to perform most, if not all, of this process.

Ir this section, we investigate whether there are any regularities in tutorial
responses to errors. We first define the types of errors students committed and

then present the different types of error feedback tutors used to initiate error
recovery in our categorization scheme. Next, we examine the relation between
tutor error initiations and error type. In the final part of this section, we discuss
how students and tutors collaborated to repair errors.

Before describing tutorial responses to errors, we first describe the types of
errors in detail. Recall that two independent coders identified all errors in the
verbalizations and typing (see Table 1). Some of these errors represent difficulties
in planning a solution, others involve incorrect assertions about functions and
concepts in LISP, and still others reflect difficulties in implementing a correct
solution. These three categories of errors capture a continuum of behavior ranging
from planning difficulties to problems implementing a solution. Thus, we can
determine whether tutors respond differently to errors where the repairs have
differing severity. The present analysis excludes the 360 typographical errors
that were typically slips and self-corrected by the student. We focus on the
remaining categories of errors. These five categories form three groups that we
use as the basis for this analysis: syntactic, semantic, and goal errors.

Syntactic errors are difficulties in communicating an expression to the LISP
interpreter correctly so that the expression can be understood. This category
covers cases where the programming constructs and algorithms used would
achieve the stated goal, but the student implemented a construct incorrectly in
the language. These errors consisted only of the addition of extra parentheses,
the deletion of needed parentheses, or the addition or deletion of quotation marks.

The second class, semantic errors, consists of inappropriate uses of LISP
constructs and includes the subtypes operator and concept errors, as shown in
Table I. These covered expressions that were syntactically correct but made use
of inappropriate constructs. One way of misapplyine a construct was to apply a
function when the preconditions of the function were not met. An example of a
precondition failure occurred when a student typed (cons 'a 'b) tc; construct a
list; in this curriculum, cons requires a list as its second argument, but the student
used an atom. To consider another example, the student might claim incorrect
output of a function that could be applied to the data. For example, one student
said "(member 'b '(a b c d)) returns (b)," when in fact it would return the list
(b c d). Thus, although member can be applied in this situation, the student did

342 MERRILL REISER, MERRILL, LANDES

not apply it correctly. These semantic errors consisted of more than simply a
failure in communicating a solution to the computer; they are erroneous choices
or applications of that which must be communicated: operators in the domain.

The ..hird category, goal errors, consists of errors concerning setting or ful-
filling goals. These errors included the subtypes incorrect goal and skipped goal
(see Table I). In these cases, a solution was syntactically correct and used the
correct function for a goal, but the goal under consideration was in some way
incorrect. When reading the problem, the student must try to set up an initial
goal structure to begin solving the problem. The student might have difficulty
or make mistakes doing this, as reflected by the student who said, "so I just return
the [first] variable," when the correct subgoal was to return a list of the first and
second variables. In other cases, students were solving the problem, choosing
and achieving subgoals, and failed to implement a subgoal that had been pre-
viously set. In these cases, students were able to set up a goal structure but then
failed to achieve a goal that had been present in the structure at the start. These
errors concern an even more critical component of problem solving than semantic
errors. They involve planning a solution apart from its implementation.

Having presented the three classes of student errors, we can now consider
how tutors responded to each type. First, we consider the events used to initiate
error recovery. Following that analysis, we investigate how the type of feedback
was related to the type of error. Recall that Figure I included a category called
Tutor Error Feedback. This category is composed of three categories: Tutor
Correction, Tutor Surface-Feature Feedback, and Tutor Plan-Based Feedback.
These differ in the portions of the error recovery process initially performed by
the tutor. When tutors intervene, they must determine how much of the error
recovery process they will perform. Analyzing the occurrence of tutorial error
feedback will cast light on how tutorial feedback is tailored to student errors.
First, we review the three categories of tutorial feedback.

We defined error feedback as utterances that contained a reference to incorrect
features of the student's solution. The feedback might also contain information
about how to repair the error. Although there was usually only one error feedback
utterance per error, our coding scheme allowed for multiple feedback utterances
per error. Thus, our definition of error feedback is very similar to our definition
of error flag, except that a flag might not point to any particular feature of the
solution, whereas an instance of error feedback must point to a feature. Tutors
used one of the error feedback categories to flag errors in 95% of cases. However,
because we are concerned here with the information conveyed by the tutor in
response to a student error, in this analysis we examine the tutorial error feedback
instead of error flags. As shown later, tutors could indicate features at differing
levels of abstraction and with differing amounts of information about the repair.

We categorized feedback as Tutor Correction if the tutor responded to a student
error by telling the student what the correct action should have been and how
to repair the error. Thus, this category captures tutorial utterances that perform

TUTORING: GUIDED LEARNING BY DOING 343

all the components of the error recovery. A Tutor Correction might contain an
explanation of why the step was incorrect, or it might simply be a directive. For
example, one tutor said, "You want to quote that, since it'll be a function call
otherwise," after the student typed (listp (a b c d)). This told the student that a
quotation mark before the (a b c d) had been forgotten and why that mattered.
In a different situation, a tutor said, "You'll need to use and there, instead of
or." These utterances differed with respect to how much explanation was given
along with the correction, but both were Tutor Corrections, because each told
the student exactly how to repair the impasse.

We also had two categories for error feedback that initially provided fewer
of the error recovery components. An utterance was considered Tutor Surface-
Feature Feedback if it only pointed out an erroneous feature explicitly present
in the student's solution. For example, instead of offering a Tutor Correction to
the Usti, example just quoted, the tutor could have offered a Tutor Surface-Feature
Feedback by saying, "An unquoted list is a function call." This type of feedback
points out to the student where the problem is and often includes information
about which component is incorrect but does not directly suggest a repair. The
repair may be easily inferable from the feedback, as in the last example in which
the repair is to add a quotation mark, but an inference is required, nonetheless.
For example, the students read in the textbook that cons took two arguments, an
atom as the first argument and a list as the second. When a student began typing
an expression designed to rotate the last element of a list to the front using the
function cons and typed (cons (last lis), the tutor intervened to say, "Last returns
a list, not an atom." The student had to infer what the tutor meant by the feedback.
This feedback could indicate that last or cons was the wrong function to use,
that the student had forgotten some additional function that needed to be used,
or even that the last should have been the second argument to cons instead of
the first. All these inferences were potentially intended in the tutorial feedback.
The feedback itself served to make the student aware of the general location of
an error. The student had to infer the nature of the error from the feedback, set
a goal for the repair, and begin replacing the errant portion of the solution. Thus,
students had more opportunity to porticipate in the error repair after a Tutor
Surface-Feature Feedback than after a Tutor Correction.

Finally, the tutor could leave even more of the error repair to the student. The
category Tutor Plan-Based Feedback simply restated the 2oal the student should
have been pursuing. For example, a tutor said, "The function should return found
if the item is in the list," after a student coded a function that returned t in that
case. This told the student that, although the programming constructs employed
may have been used appropriately, a goal embodied by that portion of the program
was incorrect. Once again, even though the inference required to determine which
goal was incorrect may have been fairly straightforward. the student still had to
make an inference. Furthermore, an utterance such as "You want to see if both
arguments are lists, not either one is a list" in response to the student code

344 MERRILL REISER, MERRILL, LANDES

(or (or (listp argl) (listp arg2))) was not as clear. In fact, this student needed
to replace the second or with an and. However, the student might sensibly infer
that the correct action was to have only one or, for example, and therefore
erroneously delete the first or. This type of feedback requires the student first
to localize the difference between the goal the tutor states and the goal the student
was pursuing and then replace the erroneous portion of the solution. Thus, the
student has even more opportunity in this situation to participate in the error
recovery process than in the two previous feedback types.

For this analysis, we considered only those 575 errors (95% of the tutor-caught
errors) that received one of these types of explicit tutorial error feedback, ex-
cluding the 42 typographical errors caught by the tutor and the 33 errors that did
not receive one of the three forms of explicit error feedback. We then examined
the frequency with which each type of student error elicited each of the three
types of tutorial response. This analysis, shown in Figure 3, reveals a strong
relation between the nature of the student's error and the type of feedback pro-
vided by the tutor, X2 (8 , N = 500) > 150,p < .001. The tutors exhibited a strong
tendency to intervene with a different guidance strategy, depending on the nature
of the error.

When the error consisted only of a low-level syntactic detail, the tutors pre-
vented the students from floundering by suggesting exactly how to repair the
error. Example 10 presents a typical example of -this type of student error and

200

175

150

50

25

IWO .13...3305

1.1 Correction

1111 Surface feature feedback

El Plan-based feedback

Syntactic Semantic

Error type

Goal

FIGURE 3 The frequency of tutorial feedback that occurred in response to each type of
student error.

TUTORING: GUIDED LEARNING BY DOING 345

tutorial response episode. In Event 2 of this example, the tutor told the student
to insert a quotation mark that the student had omitted.

Example 10 (an example of a Tutor Correction following a Syntactic Error):

I. SPSA Student: [typing] (back (a b c)
[error. should have teen '(a b c)]

2. TCr Tutor: Now remember to quote that=
Student: =Umm.=

rgument. (a b c).
3. SPSA Student: [Begins typing repair]

 ... '(a b c))

In contrast to syntactic errors, most semantic errors received Surface-Feature
Feedback. In these cases, the tutor pointed out the erroneous feature of the solution
to the student rather than suggesting an explicit repair. Example 11 presents a
typical example of a tutor focusing on a feature of the student's solution in this
manner. Here, in Event 6, the tutor described the correct behavior of append,
indicating it should not be applied in this situation.

Example 11 (an example of a Tutor Swface-Feature Feedback following
a semantic error):

I. SPSA Student: [types) (defun nundine (num)
2. SPSA Student: So you're putting together two lists if [laugh]
3. TSG Tutor: If the first one is zero.
4. SPSA Student: If number is zero. And nil othenvise
5. SPSA Student: [types] (append

[error append cannot be applied to nonlist arguments]
6. SET Tutor: Remember append. what ap

What append's arguments must be, though.
7. SPSA Student: Oh, two lists.
8. TCS Tutor: Right
9. Comm Student: So [laughs]

10. Prompt Tutor: 'Cause if, if it comes out with t=
1 1. SPSA Student: it's not going to be a list.
12. TCS Tutor: It's not a list, right.
13. SPSA Student: OK, then I just have to make, have to create a list.
14. SPSA Student: [types] list

[Error in Step 5 is repaired here.]

The third type of student error, goal errors, also received Tutor Corrections
and Tutor Surface-Feature Feedback. In addition, however, this type of error
elicited a substantial amount of Plan-Based Feedback, not often given in response
to the other error types. Example 12 presents a typical example in which the
tutor commented on the student's goals. Here, the student used an incorrect order

BEST COPY AVAIIABLE

346 MERRILL REISER, MERRILL, LANDES

of conditional cases in the solution, and the tutor reminded the student of the
importance of case order (in Event 2).

Example 12 (an example of a Tutor Plan-Based Feedback following a goal error):
I. SPSA Student: [typing]

(defun carlis (oldlist)
(cond ((listp oldlist) (car oldlist
[error. this is not the first case]

2. PBF Tutor: eh urn, a good, uh, kinda like a good thing to keep in mind
then in ordering is to put the, most specific thing first ...
most specific test first.

3. SPSA Student: [Begins typing repair, deletes first case]
((null oldlist) 'nil)

4. TCS Tutor: Right, this is a case where you do need two parens.
5. TCS Urn, it's kinda unique, because the first paren is the starting

of the case, and then the second one is for the function that
you are about to call.

6. SC Student: OK OK
7. TElab Tutor: If you call a function.

These results suggest an interesting relation between the type of error and the
tutor's initial response to the error. In those cases when the error occurred while
the student was trying to communicate a solution to the computer, the tutors did
virtually all the error recovery process. If the error concerned the selection of an
operator in the domain, however, the tutors pointed out the erroneous feature to
the student and allowed the student to participate in the remainder of the error
recovery. If the error was at an even higher level, constructing and maintaining
the problem's goal structure, the tutor assisted with the subgoal selection by
offering a Tutor Plan-Based Feedback, thus providing the student with the op-
portunity to identify the errors, plan the recovery, and execute it. In these cases,
the tutor performed little of the recovery process, allowing the student to do most
of the recovery.

These results suggest very clearly that the effectiveness of tutorial feedback
may arise because of the contingency of feedback style and content on the nature
of the student's error. One alternative possibility to be considered is whether the
categories of tutorial response were defined so that each was logically possible
only on a subset of error types. For example, perhaps tutors could offer Tutor
Corrections only in response to syntactic errors.

In fact, however, tutors did offer all types of feedback to all types of errors,
albeit with differing frequencies. To illustrate this point further, the following
outline contains examples of tutorial feedback demonstrating a plausible tutorial
response of each type to each type of student error. These examples are taken
directly from our protocols, slightly modified so that each example refers to the
same error, making it easier to compare the different feedback examples. The

3 6

TUTORING: GUIDED LEARNING BY DOING 347

original feedback was of the type presented in the outline (e.g., Plan-Based
Feedback) and did refer to the same type of error (e.g., syntactic error), however.
Notice that tutors were able to offer Plan-Based Feedback, even to a syntactic
error (lc). This feedback refers to the goal the student should have been working
on, thus allowing the student to identify and correct the error, but refers to the
syntactic error of adding an undesired quotation mark before the variable lis.
Thus, our three tutorial feedback categories are not biased in their definitions to
restrict the feedback to particular error types. Instead, the pattern in the data
appears to represent a real aspect of individualized instruction.

Examples of all three types of explicit error feedback for different error types
are:

1. Syntactic error: Student typed (member item 'lis), but there should not
have been a quotation mark before the lis.
a. Tutor Correction: "You should remove the quote before lis."
b. Tutor Surface-Feature Feedback: "Remember, a quoted atom is treated

literally, it's not evaluated."
c. Tutor Plan-Based Feedback: "I think you wanted to look for item in

the value of lis, not in the atom lis."
1. Semantic error: When attempting to get the element following some target

item in a list, the student typed (car (member item Hs)), apparently forget-
ting that member returns a list of item and all items following it in /is.
a. Tutor Correction: "You want the car of the cdr of the return."
b. Tutor Surface-Feature Feedback: "Remember member returns the tail

of the list starting with the item."
c. Tutor Plan-Based Feedback: "Didn't you want to get the element after

item?"
3. Goal error: When trying to see if two items were both lists in the context

of a larger problem. th..1 student typed (or (or (listp argl) (lisrp arg2))),
but the inside or should have been an and.
a. Tutor Correction: "The second or should be an and."
, . Tutor Surface-Feature Feedback: "You don't want two or's, do you?"
c. Tutor Plan-Based Feedback: "You meant to see if both things were

lists, not if either one was a list."

In the next section, we detail the students' involvement in the error recovery
process and highlight the differing outcomes of each type of tutorial feedback.

What Did Students Do in the Error Recovery?

We have focused so far on the role of tutorial guidance, but we haNe not yet
considered the role that students play in the error repair. One possible scenario,
given the active nature of the tutor's guidance, is that students play an active

348 MERRILL REISER, MERRILL, LANDES

role when solving problems but switch into a subsidiary role when error, occur,
following the tutor's directions, perhaps asking questions to clarify advice (cf.
Moore & Swartout, 1989), but not playing an active role in the recovery. In this
section, we examine the role of students in the error recovery process.

In our analysis of tutorial feedback, we suggested that feedback varied in the
portion of the error recovery process left to perform after the feedback To confirm
this, we analyzed the median number of events required to repair an error after
it occurred. If more of the error recovery process remained after a Tutor Plan-
Based Feedback than after a Tutor Correction, more events should be required
to achieve the subgoal correctly after a Tutor Plan-Based Feedback. As shown
in Figure 4, it took more events to repair a goal error (a median of 4 additional
events) than a semantic error (3 events). Syntactic errors exhibited the shortest
repairs, requiring a median of 2 events after the error occurred. These longer
durations of repair episodes suggest increased difficulty forming a repair, con-
sistent with our finding that the tutors left more of the error recovery process to
be performed by the student_

Analysis of the events occurring during these error episodes reveals a col-
laborative repair process. Although errors were typically repaired very quickly,
sometimes after as little as one event, the repair process did not typically consist
of the tutor leading a passive student back on to a productive solution path.
Instead, students attempting to repair an error proposed actions to take, and then
the tutor and student worked together to get the solution back on track.

5

4

3

2

RAMO /1114-111116

Syntactic Semantic

Error type

Goal

FIGURE 4 The median number of events required to repair each of the different types of
errors. Longer repairs indicate more difficult or more collaborative repair..

TUTORING: GUIDED LEARNING BY DOING 349

Figure 5 displays the common sequences of events following an en-or, those
occurring more than 50 times in all protocols. The student error is in the upper
left corner of the figure, and the next event was usually one of the types of tutor
error feedback. Infrequently, there were a few student actions intervening between
the error and the feedback. These are represented by the Other Student-Problem-
Solving Actions box in the upper right-hand corner, with the dotted link s repre-
senting infrequent events. The collaborative repair typically began with the Tutor
Error Feedback. A Student Problem-Solving Action usually followed the feed-
back, presumably implementing a partial repair. The tutor often gave confirmatory
feedback to the Student Problem-SoMng Action, to which the student also offered

Student
error

Other
student
problem
solving
action

RAMO PIXLS-0393

Tutor
error

feedback

Student
problem
solving
action

Tutor
guidance

Tutor
confirm

step

Repair episode

Student
confirmation

FIGURE 5 The sequence of student and tutor collaborative actions when repairing an error.
The dotted lines represent infrequent transitions, occurring less than I(X) times in over 1,030

errors represented.

350 MERRILL REISER, MERRILL, LANDES

a confirmation, and the tutor offered guidance, perhaps in the form of a new
goal to be achieved, which the student attempted to implement with another
problem-solving action. This is a clear collaborative enterprise, with the student
actively working to overcome the impasse and the tutor offering guidance and
confirmations (see Example 13).

Example 13 (collaborative repair of a student error):

I. SPSA Student: [typing]
(defun classify (var)

(cond ((null var) 'nil)
((nurnberp var) 'number)

2. TC Tutor: Right, urn hum, just the word number.
3. SPSA Student: [continues typing]

((t
[error: there should be only one parenthesis.]

4. PBF Tutor: Now hem you have the choice. You could either use t=
Student: =t
Tutor: or the predicate=
Student: OK
Tutor: or list.

5. SPSA Student: So I don't need that extra.
6. TCS Tutor: Right, you got it, you got it.
7. TID Tutor: That's kinda tough 'cause it's a weird pattern that these

conds have. Great.
8. SPSA Student: [typing]

t

There is another path through the error recovery process illustrated in Figure
5. This one, reminiscent of the emphasis of Moore and Swartout (1989) on
student difficulties in understanding tutorial feedback, consists of an error, sub-
sequent feedback, a Student Problem-Solving Action, some tutorial guidance, a
student confirmation, and then additional error feedback. The interesting part of
this path is that error feedback follows a student confirmation. This has to do
with the nature of our coding scheme. For example, in one case, the tutor said,
"You need the null rase first," which would be an example of Tutor Error
Feedback. If the student did not understand this, the confirmation would be
slightly delayed relative to the comment, such as a I-sec pause before saying,
"Umm, OK." People in conversation are very aware of even very short delays
(cf. Fox, 1991), so a tutor might interpret this delay as indicative of student
confusion, and thus offer more feedback to enable the student to repair the error,
such as by saying, "Since nil is also a list, you need to test for null before using
the listp test."

These analyses have shown that students do contribute to error recovery, even
though tutors often initiate the process. Students and tutors together develop and

TUTORING: GUIDED LEARNING BY DOING 351

implement a solution plan, and each may offer suggestions while the plan is
being implemented.

Generality of the Results

In the methodology of this study, we have chosen 'to emphasize the depth and
length of interaction between relatively few tutors and several students rather
than a more shallow analysis of more studenttutor pairs. This depth of interaction
has allowed us to observe tutorial responses to a wide variety of situations.

Yet, these interactions have taken place in one particular tutorial setting. These
students were very bright and highly motivated to learn the material and had not
previously experienced difficulty with the domain, as would be the case in a
remedial tutoring session. The domain involves acquiring proficiency by solving
many exercises, as in other mathematical and scientific domains, although the
cognitive complexities of these domains vary. In the programming domain, dif-
ficulties often arise as students attempt to express their intentions in a formal
notation (Merrill & Reiser, 1994). Tutorial behavior is almost certainly affected
by a variety of dimensions, including the features of the student and the domain,
and thus the generality of any individual study must be examined carefully. We
argue, however, that our results capture general aspects of tutorial behavior ap-
plicable to a range of domains wider than computer programming alone. We
argue this in two ways: (a) by showing how similar the two tutors were to each

other and (b) by pointing out similarities between our tutors and those described
in the tutoring literature.

First, the two tutors were very similar to each other. For example, recall that
we argued that tutors frequently responded to a correct student action with a
Tutor Confirm Step or Tutor Guidance. The tutorial response to a correct student
action is one indicator of tutorial style, because different styles lead tutors to
respond to student actions differentially. If these tutors display differing styles,
than the number of cases where the tutors offered Tutor Guidance versus those
where Tutor Confirm Steps were offercd will vary. For the female tutor, the
number of Tutor Guidance events was equal to 14% of the Tutor Confirm Steps.
For the male tutor, the number of Tutor Guidance events was equal to 13% of
the Tutor Confirm Steps. This suggests that the tutors are behaving similarly.
One can calculate a more general statistic to capture the degree to which the
tutors produced similar responses to similar situations by comparing the inter-
action tables (Caste llan, 1979). This technique essentially counts the-. situations
in which each tutor gave the same category of response to the same student
utterance type and then adjusts that value for the agreement that would be due
to chance, 9roducing a chi-square statistic to test for homogeneity of the tutor
student interactions. Our two tutors behaved in very similar manners toward the
students, x2 < 1, n.s. No pedagogical strategies were presented to the tutors, so
this similarity suggests that experienced tutors may share certain behaviors when

352 MERRILL, REISER, MERRILL, LANDES

examined over periods of tutoring substantial enough to allow a range of prob-
lem-solving situations to occur.

In addition to being similar to one another, our tutors also engaged at one
tIme or another in most of the behaviors previous theorists have highlighted. For
example, our tutors offered confirmations, as Fox's (1991) argurr..nts would
predict, and offered directive error feedback like the tutors described by Liumar
et al. (1990) and Schoenfeld et al. (1992). Furthermore, the students and tutors
worked together to repair errors, as Fox (1991) suggested, and this collaboration
presumably enabled students to feel as though they had mastered the problem-
solving difficulties, as Lepper et al. (1990) argued. Thus, our tutors were similar
to one another and exhibited at various times the behaviors found in other tutorial
studies in other domains. Although characteristics of the students' abilities and
the particular character of the domain may certainly influence the frequency and
implementation strategies for these tutorial behaviors, the similarity in our tutors
and the presence of the range of tutc.cial behaviors suggest that we have uncovered
some general factors tying tutorial behaviors to particular problem-solving situ-
ations and that these factors may apply to expert tutoring behaviors in a range
of problem-solving domains. In the next section, we present a theory of tutorial
guidance that attempts to describe why the tutorial behavior we found should
lead to pedagogical advantages.

A THEORY OF TUTORIAL GUIDANCE

Tutors help keep problem solving productive and maximize the learning outcomes
of their students by encouraging and supporting successful problem solving and
by providing feedback to help students recover from errors. In this section, we
review the main fmdings of this study and present a model of tutorial guidance
that accounts for these results.

During problem solving, students encounter impasses and make errors. Some-
times, however, these errors are not visible until many moves after the error
occurred. For example, opening a chess game by moving the rook's pawn forward
one space may seem reasonable to a novice chess player, and the consequences
of this poor choice will not be apparent for some time. How is a problem solver
to understand which one of many moves was responsible for the pcor outcomc?
Without this knowledge, the problem solver cannot avoid the error in the next
game. This difficulty is often called the credit assignment problem. The credit
assignment problem occurs when a success or failure arises after several steps;
a learner has to figure out which step led to the outcome experienced. This may
be a simple task if there are a small number of steps; however, most classes of
problems have more than a few steps intervening between an event and the
associated marker of success or failure, yielding a large search space.

Clearly, credit assignment could be facilitated by minimizing the number of
steps between signals of success or failure and by focusing on the features

TUTORING: GUIDED LEARNING BY DOING 353

potentially responsible. So, for example, a student's learning could be helped if
the student could easily determine, after each step, whether it was correct or not.

Anderson and h colleagues (Anderson, Boyle, Corbett, & Lewis, 1990; An-
derson et al., 1985) have argued for immediate feedback as an effective peda-
gogical technique in problem-solving domains due to the difficulties that error
recovery can pose for learning (Anderson, Conrad, & Corbett, 1989). Anderson
and Corbett (1993) argued that immediate feedback may not yield superior peda-
gogical outcomes but does lead to more efficient learning. That is, students
receiving immediate feedback and those receiving no feedback can learn a domain
equally well, but those learning with feedback can master the domain up to 3
times faster.

In fact, our tutors engaged in behaviors that minimized credit assignment to
a few events via Tutor Confirm Steps and Tutor Error Feedback. Our tutors
responded to both correct and incorrect steps very rapidly, sometimes even on
the next event, thus minimizing the space of possible actions that could have led
to an error or success. The Tutor Guidance further helped encourage students to
continue on promising solution paths and helped focus their search when neces-
sary. Furthermore, the very interactive, efficiently communicated nature of this
feedback meant that students could respond to the feedback without unduly
interrupting their problem-solving effort. This focusing of students' search be-
haviors appears to be a central source of pedagogical advantage for individualized
instruction.

The tutors responded to different types of errors with different feedback strate-
gies. We next turn to a discussion of the pedagogical benefits of this practice.

There is a trade-off in learning from errors. With each error, there are benefits
of self-recovery. Students learn more when they construct explanations for them-
selves rather than simply encoding a provided explanation (Chi et al., 1989). The
costs of flounderingin time, confusion, and frustrationcan be serious, how-
ever, especially if students do not construct explanations. Indeed, the benefit of
self-explanation has been demonstrated nrimarily among students studying in-
structional examples rather than among those interspersing self-explanations in
their own problem solving. We suggest that tutorial response to errors can be
explained by comparing the relative weight of the learning opportunity's potential
benefits to its potential costs. We call this relative weighting the learning con-
sequences of an error. By examining the learning consequences of each of the
three types of errors, we see that the relative weights of costs and benefits predict
the type of feedback tutors provided. When there was a great deal of learning
possible from self-recovery, tutors allowed students to perform as Much of the
error recovery as possible. If the costs of repair outweighed the benefits, however,
tutors simply told the student how to repair the error, thus keeping the student
on track to a solution.

Recall that there were three types of student errors: syntactic, semantic, and
goal errors. First, consider syntactic crrors. The syntax of computer programming

ISA MERRILL REISER, MERRILL, LANDES

languages is a source of difficulty for novices, and novices often spend a great
deal of time flailing around trying to fix errors arising from mistakes in the
notational syntax (Anderson et al., 1985; du Boulay, 1986; Reiser et aL, 1991).

Programming language syntax is often a source of great difficulty for novices
for a variety of reasons. Among these, language syntax is often arbitrary ana has
little relation to the ways novices think about real-world analogues of the con-
structs (Bonar & Soloway, 1985; Trafton & Reiser, 1993b). Furthermore, novices
are used to having some margin for error in communication in the real world
and sometimes fail to consider exactly how literal one must be when creating a
computer program (Bonar & Soloway, 1985; du Boulay, 1986; Pea, 1986). Due
to the largely arbitrary nature of syntactic rules, resolving errors typically relies
on weak method search or analogy from examples, not from explanation. Thus,
students may learn little more by repairing errors themselves than by simply
being told how to do the repair. Furthermore, the difficulty of repairing syntactic
errors creates a serious danger of floundering. Thus, syntactic errors have low
learning consequences. Accordingly, tutors usually just stepped in and offered a
Tutor Correction that told the student how to repair the error directly, requiring
the student only to implement the repair. This feedback strategy sacrifices the
few benefits that might accrue from the repair in favor of keeping the student
on a productive repair path, and, because little of the recovery process remained
for the student to do, recovering from these errors was quite rapid.

In a semantic error, the student misapplied a LISP function or basic concept.
How should tutors support student reasoning after this sort of error? Semantic
errors usually received Surface-Feature Feedback that pointed to the incorrect
feature evident in the solution. Given how much difficulty novices have locating
and repairing errors in programs (Katz & Anderson, 1987-1988; Reiser et al.,
1991) and the working memory load caused by the search that interferes with
learning (Anderson et al., 1985; Sweller, 1988), one might expect tutors simply
to intervene with feedback that performs all the components of the error recovery
process in the interest of keeping students from becoming overloaded, as was
the case with syntactic errors. However, a critical component of learning a new
domain involves acquiring the semantics of operators and reasoning about their
interactions when learning to construct more complex plans involving the opera-
tors (Merrill & Reiser, 1994: Ohlsson & Rees, 1991; Soloway, 1986). Further-
more, repairing errors of*.,n involves reasot :ng about causes and consequences
of the observed erroneous behavior (Katz <3- Anderson, 1987-1988; Spohrer,
Soloway, & Pope, 1985), and successful students generate these sorts of expla-
nations in other problem-solving situations (Chi et al., 1989); so self-generated
explanations, with tutorial collaboration if necessary, seem a promising mecha-
nism for students to acquire this knowledge.

Because the tutor only pointed the student to the general location of the error,
the student had to recognize what was incorrect in the solution, make an inference
about the error's nature, set a goal to repair the error, and then begin to implement

TUTORING: GUIDED LEARNING BY DOING 355

the repair. Thus, students were able to learn about the domain operators through
a very focused learning-by-doing session involving recovering from an error.
This additional problem-solving effort was reflected in the longer error-recovery
episodes. The tutors participated in the entire recovery process as well, serving
to keep the student from dangerous floundering (cf. McArthur et aL, 1990) and
rendering the error-recovery work profitable.

The third class of errors concerned the students' manipulation of the goal
structure. Structuring behavior according to goals is a critical feature of learning
new problem-solving domains (Anderson, 1983; Newell, 1990; VanLehn, 1990).
Indeed, many instructional theorists have argued that helping students maintain
and reflect on a goal structure facilitates learning a new domain (Collins &
Brown, 1988; Collins, Brown, & Newman, :989; Koedinger & Anderson, 1990;
McArthur et al., 1990; Merrill & Reiser, 1994; Sing ley, 1990).

Recall that goal errors occurred when the student's manipulation of the goal
structure faltered. How did tutors offer the required support? These errors elicited
a variety of feedback types. Surface-Feature Feedback, as with semantic errors,
helped students to pinpoint the location in the solution where their reasoning had
gone awry and to reconstruct a more promising solution plan. In other cases, the
support took the form of Tutor Plan-Based Feedback, reminding the student what
the current goal should be. This feedback also told the student the location of
the error. In a 'goal error, however, the relevant location was not an explicit
component of the solution but rather a subgoal whose implementation was faulty
or forgotten. Thus, locating the error required referring to the more abstract goal
structurehence, the appropriateness of Tutor Plan-Based Feedback. Although
the tutor could offer additional help throughout the repair, this initial feedback
alerted the student to the existence of an error and gave some infori tion about
its location, with the tasks of realizing what had been implemented incompletely,
setting the goals to perform the repair, and implementing it remaining to be
accomplished. Thus, tutors supported students' maintenance of a goal structure
in a manner similar to their support of difficulties with operators, by pointing
students to a location in a structure that would highlight the error. This allowed
students the opportunity to perform much of the error feedback, as in semantic
errors, but prevented potential floundering.

Our analyses have shown that tutors modulate their feedback in accordance
with learning consequences. Examining the eriors that led to our three types of
tutorial feedback showed that tutors tended to give explicit corrections that con-
tained directions for the error's repair when an error did not offer the opportunity
for significant learning but could lead to unfruitful floundering. Those low-learn-
ing-consequences errors offered few benefits of learning by doing, and thus tutors
simply told the student how to repair the error, and the students did so. In contrast,
when it would be beneficial for the student to explain the erroneous part of a
solution and plan the repair, such as in semantic errors, tutors focused students
on the error but let them replan a solution for that goal. When the target concept

45

356 MERRILL REISER, MERRILL, LANDES

was more abstract, such as understanding the goal structure, tutors might leave
the analysis of the error's feature to the student as well. Because of these strate-
gies, students learned to recover from errors by doing, thus actively exercising,
testing, and modifying their problem-solving knowledge, but were also protected
from some of the more severe costs of the recovery process by carefully chosen
tutorial feedback. This balance of learning by doing and tutorial guidance maxi-
mized the effectiveness of students' problem solving : ld underlay the strong
learning gains for tutored students.

In this article, we have presented a model of the re.ation between student
errors and feedback, taking into account the learning consequences of different
error types and describing how tutors support ongoing problem solving through
confirmations and rapid error flagging. We now return to the views of tutoring
advocated by the researchers reviewed earlier.

Fox (1991) argued that confirmatory feedback serves a central role in tutorial
discourse. Our results support this, and we argued that the confirmations support
problem solving by enabling students to determine more easily which action was
responsible for success and which knowledge was faulty. Lepper and his col-
leagues (Lepper et al., 1990; Lepper & Chabay, 1988) found that tutorial feedback
served to help students continue to feel successful, and they argued that this
accounted for tutorial pedagogical benefits. In our data, we found a relative lack
of feedback that was specifically motivational in character. Presumably, this
reflects the differences in ages and domains between the two studies. This rein-
forces the importance of considering the multidimensionality of tutorial behavior,
because changes in some of these dimensions led us to find almost no instances
of motivational behaviors that Lepper's tutors found very important. Lepper's
tutors were teaching small children who had already had difficulty mastering the
arithmetic material. This social situation seems destined to bring out the sup-
portive side of any compassionate instructor. Our students were bright, confident,
college-age students learning a domain for the first time, so they presumably
required less motivational support. We suggest that our tutors did achieve positive
motivational benefits but did so by minimizing student frustrations and helping
to keep problem solving productive (cf. Reiser et al., in press) rather than by
directly reinforcing students' feeling of success or by helping them explain away
difficulties encountered.

Our analyses of tutorial guidance have suggested that part of tutorial effec-
tiveness relies on tailoring feedback to particular problem-solving situations.
Indeed, the ability to individualize guidance to particular contexts has been pro-
posed as a central advantage of individualized instniction (B. S. Bloom, 1984;
F. A. Cohen et al., 1982; McArthur et al., 1990) and has motivated much work
in computerized intelligent tutoring systems (e.g., Anderson et al., 1985; Car-
bonell, 1970; Goldstein, 1982). In contrast, several studies of tutoring have sug-
gested that tutors follow a fairly uniform simple sequence of pedagogical actions
while tutoring students, essentially following straightforward curriculum scripts,

4 6

TUTORING: GUIDED LEARNING BY DOING 357

in which they present and query topics, backing up and spending more time as
needed to cover troublesome ones (Graesser, 1993; Putnam, 1987; Sleeman,
Kelley, Martinak, Ward, & Moore, 1989). In this view of tutoring, curriculum
goals that do not vary across students account for most tutorial actions.

Our results suggest, at least for tutoring sessions focusing on problem solving,
that this curriculum-script model is an incomplete description of studenttutor
interactions. We found that studenttutor dialogues were centered much more
around student-initiated events, as they attempted to actively understand new
instructional material and solve problems, than around tutorial presentation of
material and subsequent querying of student understanding. These more complex
patterns of studenttutor interactions are better described by a mixed-initiative
dialogue (Carbonell, 1970; Collins et al., 1975) than by the dialogue frames
suggested by Graesser (1993) or the curriculum scripts suggested by Putnam
(1987). The tutors responded with guidance to support and focus students' rea-
soning rather than presenting material themselves and then querying students'
understanding.

A central issue in this type of tutorial guidance concerns how tutors responded
to students' errors. As Putnam (1987) and Lepper and Chabay (1988) pointed
out, effective tutors do not appear to attempt to diagnose the faulty reasoning
that caused the students' errors. For example, tutors do not propose new problems
for students to solve purely for the purpose of discriminating between possible
misconceptions that might have caused the error. Tutors also rarely relate possible
lines of student reasoning that could have led to the error. Indeed, Sleeman and
his colleagues have argued that pointing out a student's misconception to the
student is no more effective than simply reteaching the erroneous procedure
(Sleeman et al., 1989; Sleeman, Ward, Kelly, Martinak, & Moore, 1991), which
might sug.best that diagnosis is unnecessary. In these views, effective tutorial
response to errors consists of simply reteaching the correct procedure rather than
focusing on explanations of why errors occurred.

Our microanalyses of the studenttutorial interactions in problem-solving situ-
ations suggest that tutors do more than simply reteach a correct procedure com-
ponent when students encounter impasses or errors. Our tutors focused on guiding
the error repair process rather than on communicating their guesses about the
student's misconception. As Merrill et al. (1992) suggested, whether tutors ver-
balize diagnoses is a less central question than whether (and how) they track
student reasoning and determine what type of guidance to provide. The results
of our present study demonstrate the ways in which tutors focus students on
detecting and repairing errors. Tutors do not simply correct students and review
relevant curriculum material. Instead, they collaboratively help the students to
understand and repair errors. Furthermore, tutors tailor the timing and specific
content of their feedback to the learning consequences of the particular error.
Our results demonstrate that tutors intervene less quickly and leave more of the
error repair to students when more can be learned from the error repair. Thus,

358 MERRILL REISER, MERRILL, LANDES

rather than a path through a curriculum script or dialogue frame, we see very
careful tracking of student reasoning and modulation of the timing and nature
of feedback, depending on the type of error encountered. We should note, how-
ever, that, consistent with the reteaching view, the principal goal seems to be
getting the problem solving back on track. These error episodes in general were
very short (typically 2 or 3 events) and were always focused on repairing the
error rather than exploring it.

The careful adaptation of feedback timing and content suggests that a more
complex model than curriculum scripts is needed to explain tutorial behavior.
We suggest that tutorial behavior is better modeled by microplans (McArthur et
al., 1990; Schoenfeld et al., 1992) in which particular tutorial plans are triggered
in response to particular student problem-solving situations. Our analyses suggest
that the central microplans for modeling tutorial behavior must track student
reasoning and determine when to provide confirmations or additional guidance
on correct.paths and also specify when to offer feedback to student errors and
how much of the error recovery process to perform after this intervention.

CONCLUSION

In this study, we used extensive analysis of many hours of studenttutor discourse
to attempt to determine the strategies exp,:rienced human tutors use that result
in the pedagogical advantages of human tutoring. These analyses suggest that
tutors assist students' active problem solv'ng with careful guidance, in which the
tutor keeps the student's problem solving cm tr?rk by providing ongoing con-
firmatory feedback and new goals to achieve after correct :,teps and error feedback
after errors. Students caught some of their own errors, but if the student did not
notice that an error had occurred, the tutor drew the student's attention to it
relatively quickly.

We argued that the relative weights of the benefits of self-repair versus the
costs of floundering dictated the feedback used by tutors. In situations where an
error could lead to floundering and did not offer significant potential for learning,
tutors often told the student how to repair the error, thereby leaving only the
implementation of the repair to the student. In contrast, tutors offered less support
for errors that offered significant benefits of self-repair. Thus, as learning con-
sequences increased, the tutors allowed the students to perform more and more
of the error recovery, including constructing their own explanations for the errors
and acting on their analyses (cf. Chi et al., 1989). This active self-explanation
and problem solving leads students to develop better models of the behavior of
operators in the domain.

Tutorial guidance allows an extremely effective style of learning by doing,
namely, guided learning by doing. Students can pursue the benefits of actively
constn:cting understandings and solution plans and implementing them with care-

TUTORING: GUIDED LEARNING BY DOING 359

fully modulated guidance from the tutor. Tutors modulate their guidance in re-
sponse to students' actions and current problem-solving context. Tutors encourage
students to continue on profitable paths and warn students of errors through
explicit and rapid comments that focus students' attention on sources of errors.
When obstacles are encountered, students and tutors collaboratively effect a
repair. During this repair, tutors offer guidance and feedback but do so in a
manner that encourages students to analyze the error and actively contribute to
the repair. This carefully modulated guidance allows the best pedagogical ad-
vantages of learning by doing while minimizing the consequent potential costs
of self-directed search for a correct answer through a very large problem space.
This careful tutorial guidance offered during successful problem solving as well
as during difficulties leads tutored students to achieve the substantial cognitive
and motivational advantages observed in individualized tutoring.

ACKNOWLEDGMENTS

This work was supported in part by contracts MDA903-87K-0652 and
MDA903-90C-0123 to Princeton University and contract MDA903-92C-
0114 to Northwestern University from the Army Research Institute and by a
grant from the Spencer Foundation. The views and conclusions in this article are
those of the authors and should not be interpreted as representing the official
policies of those institutions.

The comments of Peter Piro lli and an anonymous reviewer significantly im-
proved this article. We also gratefully acknowledge the programming assistance
of Jeremiah Faries, comments from David McArthur, Michael Ranney, and Rich-
ard Beckwith, and assistance 'from Holly Hillman and Jason Thompson. Diane
Schwartz was of invaluable assistance with several of the figures presented in
this art ic le.

Portions of these analyses were presented at the annual meeting of the Ameri-
can Educational Research Association, March 1992.

REFERENCES

Anderson. J. R. (1983). The architecture of cognition. Cambridge. MA: Harvard University Press.
Anderson. J. R. (1987). Skill acquisition: Compilation of weak-method problem solutions.

Psychological Review. 94, 192-210.
Anderson, J. R. (1989). The analogical origins of errors in problem solving. In D. Klahr & K.

Kotovsky (Eds.). Complex information processing: The impact of Herbert A. Simon (pp. 343-372).
Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Anderson, J. R.. Boyle, C. F., Corbett. A. T.. & Lewis, M. W. (1990). Cognitive modeling and
intelligent tutoring. Artificial Intelligence, 42,7-49.

Anderson, J. R., Boyle. C. F., & Reiser, B. J. (1985). Intelligent tutoring systems. Science, 228.
456-562.

gti

BEST COPY AVAILABLE

360 MERRILL, REISER, MERRILL, LANDES

Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition and the LISP tutor. Cognitive
Science, 13, 467-505.

Anderson, J. R., & Corbett, A. T. (1993). Tutoring of cognitive skill. In J. R. Anderson (Ed.), Rules
of the mind (pp. 235-255). Hillsdale, NJ: Lawrence Eribaum Associates, Inc.

Anderson, J. R., Corbett, A. T., & Reiser, B. J. (1987). Essential LISP. Reading, MA: Addison-Wesley.
Anderson. J. R., & Jeffries, R. (1985). Novice LISP entrs: Undetected losses of information from

working memory. Hianan-Computer Interaction, I. 107-131.
Bakeman, R., & Gottman, J. M. (1986). Observing interaction: An introduction to sequential analysis.

Cambridge, England: Cambridge University Press.
Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group instruction as effective

as one-to-one tutoring. Educational Researcher, 13, 4-16.
Bloom, L, Rocissano, L., & Hood, L. (1976). Adult-child discourse: Developmental interaction

between information processing and linguistic knowledge. Cognitive Psxhology, 8, 521-551.
Bonar, J. G., & Soloway, E. (1985). Preprogramming knowledge: A major source of misconceptions

in novice programmers. Human-Computer Interaction, I, 133-161.
Carbonell, J. R. (1970). Al in CAI: An artificial intelligence approach to computer-aided instruction.

IEEE Transactions on Man-Machine Systems, 11, 190-202.
Castellan, N. J., Jr. (1979). The analysis of behavior sequences. In R. B. Cairns (Ed.), The analysis

of social interactions: Methods, issues, and illustrations (pp. 81-116). Hillsdale, NJ: Lawrence
Erlbaum Associates. Inc.

Chi, M. T. H., Bassok, M.. Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How
students study and use examples in learning to solve problems. Cognitive Science, 13, 145-182.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological
Measurement, 20, 37-46.

Cohen, P. A., Kulik, J. A., & Kulik, C. C. (1982). Educational outcomes of tutoring: A meta-analysis
of findings. American Educational Research Journal, 19, 237-248.

Collins, A., & Brown. J. S. (1988). The computer as a tool for learning through reflection. In H.
Mandl & A. Lesgold (Eds.), Learning issues for intelligent tutoring systems (pp. 1-18). New York:
Springer-Verlag.

Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Te-hing the crafts
of reading, writing, and mathematics. In L. B. Rcsnick (Ed.), Knowing, learning, and instruction:
Essays in honor of Robert Gla.ser (pp. 453-494). Hillsdale, NJ: Lawrence Erlbaum Associates,
Inc.

Collins, A., & Stevens. A. L (1982). Goals and strategies of inquiry teachers. In R. Glaser (Ed.).
Advances in instructional psychology (Vol. 2, pp. 65-119). Hillsdale. NJ: Lawrence Erlbaum
Associates, Inc.

Collins, A., Warnock, E. H., & Passafiume, 3. J. (1975). Analysis and synthesis of tutorial dialogues.
In G. H. Bower (Ed.). The psychology of learning and motivation (pp. 49-87). New York: Academic.

du Boulay. B. (1986). Some difficulties of learning to program. Journal of Educational Computing
Research, 2,57-73.

Ericsson, K. A., & Simon, H. A. (1984). Protocol analysis: Verbal reports as data. Cambridge, MA:
MIT Press.

Faries, J. M. (1991). Reasoning-based retrieval of analogies (Doctoral dissertation, Princeton
University. 1991). Dissertation Abstracts International, 52, 2329B.

Fisher, C. (1991). Protocol analyst's workbench: Design and evaluation of computer-aided protocol
analysis (Doctoral dissertation. Carnegie Mellon University, 1991). Dissertation Abstracts
International, 52, 3277B.

Fox, B. A. (1991). Cognitive and interactional aspects of correction in tutoring. In P. Goodyear (Ed.),
Teaching knowledge and intelligent tutoring (pp. 149-172). Norwood, NJ: Ablex.

Gentner, D..(I 983). Structure mapping: A theoretical framework for analogy. Cognitive Science, 7,
155-170.

TUTORING: GUIDED LEARNING BY DOiNG 361

Gick, M. L., & Holycak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12,
306-355.

Goldstein, I. P. (1982). The genetic graph: A representation for the evolution of prccedural knowledge.
In D. H. Sleeman & S. Brown (Eds.), Intelligent naming systems (pp. 51-77). Undon: Academic.

Graesser, A. (1992). Questioning mechanisms during complex learning. Memphis, TN: Memphis
State University.

Graesscr, A. C. (1993, August). Dialogue patterns and feedback mechanisms during naturalistic
tutoring. Paper presented at the annual meeting of the Cognitive Science Society, Boulder, CO.

Graesser, A. C., Person, N. K., & Huber, J. D. (1993). Question asking during tutoring and in the
design of educational software. In M. Rabinowitz (Ed.), Cognition, instruction, and educational
assessment (pp. 149-172). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Grice, H. P. (1975). Logic and conversation. In P. Cole & J. I,. Morgan (Eds.), Syntax and semantics:
Vol. 3. Speech acts (pp. 41-58). New York: Academic.

Katz. I. R., & Anderson, J. R. (1987-1988). Debugging: An analysis of bug location strategies.
Human-Computer Interaction, 3, 351-399.

Kerry, T. (1987). Classroom questions in England. Questioning Exchange, I, 32-33.
Koedinger, K. R., & Anderson, J. R. (1990). Abstract planning and perceptual chunks: Elements of

expertise in geometry. Cognitive Science, 14, 511-550.
Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Universal subgoaling and chunking: The

automatic generation and learning of goal hierarchies. Hingham, MA: Kluwer Academic.
Lepper, M. R., Aspinwall, L., Mumme. D., & Chabay, R. W. (1990). Self-perception and social

perception processes in tutoring: Subtle social control strategies of expert tutors. In J. M. Olson
& M. P. Zanna (Eds.). Self-inference processes: The Sixth Ontario Symposium in Social Psychology
(pp. 217-237). Hillsdale, NI: Lawrence Erlbaum Associates, Inc.

Upper, M. R.. & Chabay, R. W. (1988). Socializing the intelligent tutor: Bringing empathy to
computer tutors. In H. Mandl & A. Lesgold (Eds.), Learning issues for intelligent tutoring systems
(pp. 242-257). New York: Springer-Verlag.

Lewis. M. W & Anderson. J. R. (1985). Discrimination of operator schemata in problem solving:
Learning from examples. Cognitive Psychology, 17, 26-65.

Littman, D. (1991). Tutorial planning schemas. In P. Goodyear (Ed.). Teaching knowledge and
intelligent tutoring (pp. 107-122). Norwood. NJ: Ablex.

Littman, D., Pinto, J.. & Soloway, E. (1990). The knowledge required for tutorial planning: An
empirical analysis. Interactive Learning Environments. I, 124-151.

Mayer, R. E., Dyck. J. L.. & Vilberg. W. (1986). Learning to program and learning to think: What's
the connection? Communications of the ACM, 29, 605-610,

McArthur, D.. Stasz. C., & Zmuidzinas, M. (1990). Tutoring techniques in algebra. Cognition and
instruction, 7,197-244.

McKendree, J. (1990). Effective feedback content for tutoring complex skills. Human-Computer
Interaction. 5. 381-413.

Merrill. D. C., & Reiser. B. J. (1994). Reasoning-congruent learning environments: Scaffolding
learning by doing in new domains. Manuscript submiited for publication.

Men-ill. D. C., Reiser. B. J., Ranney, M., & Trafton, J. G. (1992). Effective tutoring techniques: A
comparison of human tutors and intelligent tutoring systems. Journal of the Learning Sciences. 2,

277-306.
Moore. J. D., & Swartout, W. R. (1989, August). A reactive approach to explanation. Pa`per presented

at the 1 lth International Joint Conference on Artificial Intelligence, San Mateo, CA.
Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.
Ohlsson, S.. & Rees. E. (199 I). The function of conceptual understanding in the learning of arithmetic

prccedures. Cognition and Instruction, 8, 103-179.
Papert..C. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.
Pea, R. D. (1986). Language-independent conceptual "bugs" in novice programming. Journal of

Educational Computing Research, 2,25-36.

362 MERRILL REISER MERRILL, LANDES

Piro Ili, P. (1991). Effects of examples and their explanations in a lessen on recursion: A production
system analysis. Cognition and Instruction, 8,207-259.

Putnam, R. T. (1987). Structuring and adjusting content for students: A study of live and simulated
tutoring of addition. American Educational Research Journal, 24,13-48.

Reiser, B. J., Beekelaar, R., Ty le, A., & Merrill, D. C. (1991, August). GIL: Scaffolding learning to
program with reasoning-congruent representations. Paper presented at the International Conference
of the Learning Sciences, Evanston, IL.

Reiser, B. J., Copen, W. A., Ranney, M., Hamid, A., & Kirnberg, D. Y. (in press). Cognitive and
motivational consequences of tutoring and discovery learning. Cognition and Instruction.

Reiser. B. J.. Kimberg, D. Y., Lovett, M. C., & Ranney, M. (1992). Knowledge representation and
explanation in GIL an inteligent tutor for programming. In J. H. Larkin & R. W. Chabay (Eds.),
Computer-assisted instruction and intelligent tutoring systems: Shared goals and complementary
approaches (pp. 1 1 1-149). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Scardamalia. M., Bereiter, C., McLean, R. S., Swallow, J., & Woodruff, E. (1989). Computer-sup-
ported intentional learning environments. Journal of Educational Computing Research, 5, 51-68.

Schank. R. C., & Leake. D. B. (1989). Creativity and learning in a case-based explainer. Artificial
Intelligence, 40, 353-385.

Schoenfeld, A. H., Gamoran, M., Kessel, C., & Leonard, M. (1992, April). Toward a comprehensive
model of human tutoring in complex subject matter domains. Paper presented at the meeting of
the American Educational Research Association, San Francisco.

Singley, M. K. (1990). The reification of goal structures in a calculus tutor: Effects on problem
solving performance. Interactive Learning Environments, I, 102-123.

Sleeman, D., Kelley, A. E., Maninak, R., Ward, R. D., & Moore, R. L. (1989). Studies of diagnosis
and remediation with high school algebra students. Cognitive Science, 13, 551-568.

Sleeman, D., Ward, R. D., Kelley. E., Martinak, R.. & Moore, J. (1991). Overview of recent studies
with PIXIE. In P. Goodyear (Ed.), Teaching knowledge and intelligent tutoring (pp. 173-185).
Norwcod, NJ: Ablex.

Soloway, E. (1986). Learning to program = learning to construct mechanisms and explanations.
Communications of the ACM, 29,850-858.

Spohrer, J. C., Soloway, E., & Pope, E. (1985). A Goal/Plan analysis of buggy PASCAL programs.
Human-Computer Interaction, 1, 163-207.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science,
12, 257-285.

Trafton, J. G.. & Reiser. B. J. (1993a. August). The contributions of studying examples and solving
problems to skill acquisition. Paper presented at the annual meeting of the Coenitive Science
Society. Boulder. CO.

Trafton, J. G., & Reiser. B. J. (1993b). Novices' use of forward and backward reasoning in a new
problem solving domain. Unpublished manuscript, Northwestern University, Evanston, IL.

VanLehn, K. (1988). Toward a theory of impasse-driven learning. In H. Mandl & A. Lesgold (Eds.),
Learning issues for intelligent tutoring systems (pp. 19-41). New York: Springer-Verlag.

VanLehn, K. (1990). Mind bugs: The origins of procedural misconceptions. Cambridge. MA: MIT
Press.

VanLehn. K., Jones, R.. & Chi. M. T. H. (1992). A model of the self-explanation effect. Journalof
the Learning Sciences, 2, 1-59.

BEST COPY AVAILABLE

5')

TUTORING: GUIDED LEARNING BY DOING 363

APPENDIX A: INSTRUCTIONS FOR CODERS
AND RELIABILITY CODERS

Segmentation Instructions

1 Break a new segment if and only if you can clearly demonstrate a need
to do so. In other words, a segment should be continued until a concept
is introduced that was not present before.

2. Pronouns are tricky. If you are segmenting and run across a new usage of
some pronoun (e.g., "it"), try to find the meaning of the pronoun in the
current segment Only break a segment when a pronoun is introduced if
the pronoun cannot be bound to a noun in the current segment.

3. Segments can continue across interruptions if the interruption is not heeded
by the speaker. If something is said as an interruption (no matter how
small) that the speaker responds to in any way, a new segment must be
made for the interruption.

4. Segmentation based solely upon typing must be done very carefully, be-
cause there is very little information in a typing episode. Thus, a segment
can be made if the student completes a complete LISP action (defun,
function call) or if there is conversation during the typing, but never within
a defiin.

5. Segmentation is independent of categorization. Don't worry about what a
segment will bebreak according to the rules above.

Coding Instructions

I. Each segment must receive 1 and only .1 of the codes that appear in the
attached pages.

2. Categorize based upon what was said, not what you think the utterance
meant. The codes are grouped into questions and assertions. If you are
categorizing a question, the code you apply must be one of the question
codes, etc.

3. The default categories are marked. Unless you have definite reason to do
otherwise, you should use the default catestory.

4. Do not "read into" category definitions. If an utterance does not quite fit
category A, it does not fit! Do not stretch the categories to fit an utterance.

5. Sometimes a typing episode will be in the middle of a segment. Encode
this segment according to the most important element. For example, if the
person is simply saying what they are typing, the segment fhould be cate-
gorized as typing, and so forth.

364 MERRILL, REISER, MERRILL, LANDES

APPENDIX B: DEFINITIONS OF CODING CATEGORIES

The categories are grouped here as they were discussed in the section on Discourse
Analysis Methods. All examples are taken verbatim from the actual protocols.

The Student Constructs a Solution (Student
Problem-Solving Action)

Student Correction. This category consists of self-corrections by the stu-
dent, in which the student has made an error, but immediately recognizes it and
suggests how to fix it.

Oh, I need a quote before that!

Whoops, I need to add a parenthesis there.

Student Elaboration. An utterance is categorized as an Elaboration if the
student is answering a question, without providing actull data (which would be
a Student Simulate Process, described later), or is simply adding to the information
already presented in the conversation. Thus, Student Elaboration is a default
category for student-to-tutor assertions that are task related, but do not fit any
other category.

OK, an empty list.

The rest of the sentence after by ...

Student Example. The student produces a concrete example to demonstrate
some point or to ask a question.

What about "a" and "(b c d)"?

What about nil then?

Student Focuses Attention. The student causes some item in the book or
on the screen to become the focus of the conversation.

And this cond is the thing we're finding.

Oh, they're talking about this!

5,t

TUTORING: GUIDED LEARNING BY DOING 365

Student Indicates Difficulty. The student remarks that a problem is difficult
(or long, etc.) or makes some comment indicating that he or she thinks the next
section will be hard.

Writing this would be a problem.

Boy this is long!

Student Indicates Lack of Understanding. These utterances tell the tutor
that the student is confused. This could be done directly, or indirectly, such as
through several repetitions of the same word, without making any progress toward
answering the question (as in the second example).

I don't understand what they mean here.

Oh, parameters, parameters are ... umm ... they're uhh

Student Reads. The student reads from the textbook. This is marked in
the transcripts by markers such as 12.11." The numbers reflect the section of
the text being read.

Student Refers. The student refers to other material to shed light on the
current situation. The material could be a previous problem, a section of the text
that was already read. The important aspect is that the student uses previous
work to cast light on the current situation.

This is just like what we did yesterday, the pal thing.

Actually, this would have been true if this is greater than. It's just the same thing.

Student Sets Goal. The student sets a goal for what to do next or indicates
how to do the next step. Thus, this category includes both statements about goals
and the plans that can achieve them.

So they want us to write down for eachll

Now I have to put the quote.

Student Types. The student types into the LISP interpreter or writes on
the paper. This is denoted either by "(writing)" or by the time the student began
typing, such as 120:26:23]."

(20:10:451

Then this, (writing)

55

366 MERRILL, REISER, MERRILL, LANDES

The StuderA Asks tor Help From the Tutor

Assist Plan Assertion. This category contains utterances that request an
evaluation of the student's plan or understanding of the problem.

But we can't do, can't we do cons twice or something?

Do I ... do I go zerop num?

Assist Plan Question. This category consists of utterances that axe requests
for the tutor's help in deciding what to do next. These utterances can be implied
or actual questions.

Now I should do ...

I don't know what to do now.

Assist Understanding. This category contains utterances that ask for the
tutor to evaluate the student's understanding of a LISP concept. These utterances
can be questions or implied questions.

Do you mean to say it can't be more than one, right?

But what do you mean by variable, this is the variable?

Student Informational Request. This is the most conservative student-to-
tutor request category. If there is no reason to think that a student request is
either an Assist Understanding or an Assist Plan, then the utterance should be
coded as this. This category also includes requests such as how to use the editor,
how to type parentheses.

Exit-with-save was what, F9?

But why are they saying that it's surprising?

The Student Indicates That the Tutor's Utterances
Were Understood

Student Confirmation. The student says something to indicate that he or
she is following along with what the tutor said, either by some sort of restatement
or a simple "OK."

It can be very complex, I understand.

Yes, this is what we want.

TUTORING: GUIDED LEARNING BY DOING 367

The Student Checks the Current Answer

Student Simulates Process. This category is similar to Elaborate, with a
crucial difference. This one contains utterances that require the student to work
through the behavior that the computer would execute on the current example,
either verbally or nonverbally. In other words, utterances that describe how LISP
would actually process some defin;tion are classified here. In addition, utterances
thlt produce data output from functions fall here as well, because to produce
data, the student must have "nm the function" in his or her head.

And then after that's done, see I want to put d again, and again the same thing.

Oh this will give me (plum apple cantaloupe grape).

Miscellaneous Non-Task-Related Student Utterances

Student Comments. This category contains unclassifiable utterances and
unrelated talk. In addition, if a student makes an assertion that cannot be put
into another category because it is unclear what is being said, the utterance is
categorized here.

Oh, hi there, just a second.

Well, you, this isll

The Tutor Performs a Portion of the Problem Solving

Tutor Example. This is the tutorial version of Student Example; thus, this
category consists of the tutor proposing a concrete example to be worked on.
This is listed as a question, because these utterances often take the form of "'What
about list a b c?"

OK, how about the input ni/ there?

What about using "(a c d)" there?

Tutor Focuses Attention. Tnis is the tutorial version of Student,Focuses
Attention and consists of the tutor making something the topic of conversation,
withdut giving any new information about it. Thus, the tutor could be pointing
to something in the text or to something that had just been said.

This is remember, a variable now.

And defun always returns the name of the function.

368 MERRILL REISER. MERRILL. LANDES

Tutor Reads. This is the tutorial version of Student Reads. The tutor reads
from the textbook, and the section read is denoted by markers such as "[2.]

Tutor Refers. This is the tutorial version of Student Refers. These utterances
involve the tutor bringing previous work to bear on the current situation. The
work could be a previous part of the textbook, a previous prob!em, or even an
alternate way of solving a problem.

Just like car and cdr and cons have names, if you're cicnning a new function you
need to give it a name.

It's just like what you weir doing yesterday, figuring out what you want to do.

Tutor Types. This is the tutorial version of Student Types, and is marked
either with the time the typing occurred or with "(writing)."

[20:10:45]

Then this, (writing)

The Tutor Offers Guivance fo: the Student's Ongoing
Problem Solving

Tutor Confidence Builder. The tutor expresses confidence in the student's
ability to solve the problem or offers praise to the student about a specific
problem-solving success.

It's really good that you thought to put this first!

Yeah, but the last one will be easy for you.

Tutor Hint. This category captures tutorial utterances that hint at the next
step but do not give it fully. Thus, these utterances are similar to Tutor Sets Goal
(defined later) but are not as directiverather, they just suggest a course of
action to be considered.

Remember, you have the less-than and greater-than predicates.

For example, what about the predicate that tests atom?

Tutor Indicates Difficulty. This is the tutorial version of Student Indicates
Difficulty. This category includes utterances that describe the current problem
as hard or long, and so on, or tell the student that the next set of problems will
be very difficult.

TUTORING: GUIDED LEARNING BY DOING 369

But you see, this is the complex part.

And I have to warn you, these are getting tougher, so don't worry if it takes you
longer.

Tutor Sets Goal. This is the tutorial version of Student Sets Goal and
includes assertions about what to do next or how to do it. The statement may
refer to a new goal or to a plan that achieves a stated goal.

So now, if you, you could type this in. We can do some examples with it.

So you'll need the function name, then the parameters, and then the body.

Tutor Supportive Statement. This category contains utterances that are
designed to make the student aware that the tutor is there to help if needed.

And then, whenever you have a question, just let me know.

I can help you if you need it.

The Tutor Confirms a Student Step

Tutor Confirmation. This is the tutorial version of Student Confirmation.
Thus, these utterances indicate that the tutor is following along with what the
student is saying or doing. This could be done via a restatement or a simple
"OK." Notice that this category includes the tutor telling the student that the step
is right or saying that the student's last comment was understood.

Right, uh huh.

Yes, this part.

Tutor Elaboration. This is the tutorial version of Student Elaboration. Tutor
utterances are categorized as Elaborations if the tutor answers a question, without
providing explicit data or output of a function (which would be a Tutor Simulates
Process, described later), or is simply saying something that adds to the infor-
mation present in the discussion. This is a default tutorial utterance, so ifa tutorial
assertion seems on task, but does not fit any other category, it should go here.

Right, because it's embedded in this bigger list, but when you take it out, this is
just like a list with two separate ...

And divide is slash which is near the question mark.

5 9

370 MERRILL REISER, MERRILL, LANDES

The Tutor Gives Error Feedback After an Incorrect
Student Step

Tutor Correction. This is the tutorial version of Student Correction and
involves the tutor telling the student exactly how to fix an error. The presence
of a direct statement of how to fix the error is the marker of a Tutor or Student
Correction. The subject of the correction and the amount of explanation in the
correction can vary, but there must be an explicit direction for fixing the error.

And one more for this one.

No, in a list.

Tutor Plan-Based Feedback. This is one of the forms of tutorial error
feedback. This type of feedback requires that the tutor know what the student
was trying to do when the error occurred. If the student makes an error and the
tutor responds to that error by referring the student to the goal that the student
should have been working on, that utterance should be categorized as a Tutor
Plan-Based Feedback. These utterances are similar to Tutor Sets Goal (defined
earlier), except that they occur after an error and refer to the goal the student
should have been following.

Well, you'll want to use and and or, not two or's.

Oh wait, you don't want to, you don't want to return now.

Tutor Surface-Feature Feedback. This is another type of tutorial error
feedback. This type of feedback points the student to the feature of the solution
that is incorrect. The feature could be syntactic or it could be relating to the
function the student chose, and so forth. The identifying elements of this category
are that an error has occurred and that the tutor simply makes the student aware
of the surface feature that is wrong.

Well, actually !Lop would return true for an empty list, also.

Quote why ['why] is not a function.

The Tutor Attempts to Assess the Student's
Understanding of a Topic

Tutor Probe. The tutor tries to determine what the student knows about
some topic. The topic could be a LISP function, a problem, and so forth.

OK, now do you remember that?

OK, so how many elements?

60

TUTORING: GUIDED LEARNING BY DOING 371

Tutor Prompt. This category is for tutor utterances that are asking for the
student's next step. So the tutor could be asking for the next step of a problem,
of an example, or of the understanding of a problem.

So what will that part return?

Cons that atom into the list, and then [pause]?

The Tutor Helps the Student Check the Current Answer

Tutor Simulates Process. This is the tutorial version of Student Simulates
Process and includes utterances that include the production of data in the manner
that LISP would. That is, the tutor works through the behavior the computer
would execute on the LISP code; this could be verbal or nonverbal. If the tutor
produces actual data output from a function, the code must have been run in the
tutor's head, so the utterance is categorized here.

So this is not a list, and it returns nil.

If you call the function atom, on nil, it returns true, because it says that nil is an

atom. It abo returns nil if we do it on listp.

Miscellaneous Non-Task-Related Tutor Utterances

Tutor Comment. This is the tutorial version of Student Comment. This
category consists of tutor utterances that were either unrelated to the task or
uninterpretable.

Whoops, let me turn this off.

Do you want a drink?

C
A

)

N
.)

6
2

A
P

P
E

N
D

IX
 C

T
ra

ns
iti

on
s

B
et

w
ee

n
E

ve
nt

s

S
P

S
A

S
 A

sk
s

fo
r

lle
lp

S

C
on

fir
m

s
S

 C
he

ck
s

A
ns

w
er

T
P

S
A

T
G

ui
da

nc
e

T
 C

on
fir

m
s

S
te

p

T
 E

rr
or

F
ee

db
ac

k

T
 A

ss
es

se
s

U
nd

er
st

an
di

ng
T

 C
he

ck
s

A
ns

w
er

S
P

S
A

62
3

13
6

30
75

15
3

51
3

1,
74

4
39

7
15

6
78

S
 A

sk
s

fo
r

Ilc
 lp

34
0

6
3

19
68

50
1

67
23

23

S
 C

on
fir

m
s

28
2

56
33

29
13

0
31

1
80

7
36

92
20

1

S
 C

he
ck

s
A

ns
w

er
40

1
4

28
10

25
24

9
59

17
33

T
P

S
A

12
0

2
16

8
21

15
18

42
17

15
22

T
 G

ui
da

nc
e

56
1

63
34

3
30

29
93

11
2

30
33

30

T
 C

on
fir

m
s

S
te

p
1,

49
5

30
2

92
3

16
8

72
27

3
49

3
47

58
11

8

T
 E

rr
or

 F
ee

db
ac

k
28

1
43

22
2

25
14

48
64

14
18

17

T
 A

ss
es

se
s

U
nd

er
st

an
di

ng
37

26
88

R
O

4
15

22
5

6
6

T
 C

he
ck

s
A

ns
w

cr
23

i 2
4

23
0

33
14

7
22

61
9

24

T
ot

al
3,

50
6

75
3

2.
04

7
49

5
46

0
1,

37
1

4,
05

6
73

3
42

7
55

2

N
ot

e.
T

he
 n

um
be

rs
 in

 th
is

 ta
bl

e
ar

e
th

e
fr

eq
ue

nc
ie

s
of

 tr
an

si
tio

ns
 b

et
w

ee
n

ev
en

ts
. T

he
 la

be
ls

 a
lo

ng
 th

e
le

ft
si

de
 a

re
 th

e
fir

st
 e

ve
nt

,a
nd

 th
e

la
be

ls
 a

lo
ng

 th
e

to
p

ar
e

th
e

su
bs

eq
ue

nt
 e

ve
nt

. F
or

 e
xa

m
pl

e.
 Ih

e
le

ftm
os

t n
um

be
r

of
 th

e
se

co
nd

 r
ow

 is
 3

4.
T

hi
s

nu
m

be
r

in
di

ca
te

s
th

at
 th

er
e

w
er

e
34

 in
st

an
ce

s
w

he
re

 a
 S

tu
de

nt
 P

ro
bl

em
-S

ol
vi

ng

A
ct

io
n

fo
llo

w
ed

 a
 S

tu
de

nt
 A

sk
s

fo
r

Ile
lp

. E
ve

nt
 la

be
ls

 in
 g

en
er

al
 r

ef
er

 to
 th

e
hi

gh
er

-o
rd

er
 c

at
eg

or
ie

s
of

 s
tu

de
nt

 (
S

)
or

 tu
to

r
(T

)
ac

tio
ns

. S
P

S
A

 =
 S

tu
de

nt
 P

ro
bl

em
.S

ol
vi

ng

A
ct

io
n:

 T
P

S
 A

 =
 T

ut
or

 P
ro

bl
er

nS
ol

vi
ng

 A
ct

io
n.

B
E

ST
 C

O
PY

 A
V

A
IL

A
B

L
E

